BACKGROUND In the rapidly evolving landscape of psychiatric research,2023 marked another year of significant progress globally,with the World Journal of Psychiatry(WJP)experiencing notable expansion and influence.AIM ...BACKGROUND In the rapidly evolving landscape of psychiatric research,2023 marked another year of significant progress globally,with the World Journal of Psychiatry(WJP)experiencing notable expansion and influence.AIM To conduct a comprehensive visualization and analysis of the articles published in the WJP throughout 2023.By delving into these publications,the aim is to deter-mine the valuable insights that can illuminate pathways for future research endeavors in the field of psychiatry.METHODS A selection process led to the inclusion of 107 papers from the WJP published in 2023,forming the dataset for the analysis.Employing advanced visualization techniques,this study mapped the knowledge domains represented in these papers.RESULTS The findings revealed a prevalent focus on key topics such as depression,mental health,anxiety,schizophrenia,and the impact of coronavirus disease 2019.Additionally,through keyword clustering,it became evident that these papers were predominantly focused on exploring mental health disorders,depression,anxiety,schizophrenia,and related factors.Noteworthy contributions hailed authors in regions such as China,the United Kingdom,United States,and Turkey.Particularly,the paper garnered the highest number of citations,while the American Psychiatric Association was the most cited reference.CONCLUSION It is recommended that the WJP continue in its efforts to enhance the quality of papers published in the field of psychiatry.Additionally,there is a pressing need to delve into the potential applications of digital interventions and artificial intelligence within the discipline.展开更多
为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的...为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。展开更多
The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affi...The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.展开更多
A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and s...A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You, 2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space. An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be de- termined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional. It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the clus- ter of θ-p points of the neutral density surface, errors will occur, and these errors can be quantified from this diagram. Examples showing the use of the method are presented for each of the world’s main oceans.展开更多
基金Supported by Philosophy and Social Science Foundation of Hunan Province,China,No.23YBJ08China Youth&Children Research Association,No.2023B01Research Project on the Theories and Practice of Hunan Women,No.22YB06.
文摘BACKGROUND In the rapidly evolving landscape of psychiatric research,2023 marked another year of significant progress globally,with the World Journal of Psychiatry(WJP)experiencing notable expansion and influence.AIM To conduct a comprehensive visualization and analysis of the articles published in the WJP throughout 2023.By delving into these publications,the aim is to deter-mine the valuable insights that can illuminate pathways for future research endeavors in the field of psychiatry.METHODS A selection process led to the inclusion of 107 papers from the WJP published in 2023,forming the dataset for the analysis.Employing advanced visualization techniques,this study mapped the knowledge domains represented in these papers.RESULTS The findings revealed a prevalent focus on key topics such as depression,mental health,anxiety,schizophrenia,and the impact of coronavirus disease 2019.Additionally,through keyword clustering,it became evident that these papers were predominantly focused on exploring mental health disorders,depression,anxiety,schizophrenia,and related factors.Noteworthy contributions hailed authors in regions such as China,the United Kingdom,United States,and Turkey.Particularly,the paper garnered the highest number of citations,while the American Psychiatric Association was the most cited reference.CONCLUSION It is recommended that the WJP continue in its efforts to enhance the quality of papers published in the field of psychiatry.Additionally,there is a pressing need to delve into the potential applications of digital interventions and artificial intelligence within the discipline.
文摘为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。
文摘The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.
文摘A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You, 2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space. An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be de- termined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional. It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the clus- ter of θ-p points of the neutral density surface, errors will occur, and these errors can be quantified from this diagram. Examples showing the use of the method are presented for each of the world’s main oceans.