Deep learning (DL) techniques, more specifically Convolutional Neural Networks (CNNs), have become increasingly popular in advancing the field of data science and have had great successes in a wide array of applicatio...Deep learning (DL) techniques, more specifically Convolutional Neural Networks (CNNs), have become increasingly popular in advancing the field of data science and have had great successes in a wide array of applications including computer vision, speech, natural language processing, etc. However, the training process of CNNs is computationally intensive and has high computational cost, especially when the dataset is huge. To overcome these obstacles, this paper takes advantage of distributed frameworks and cloud computing to develop a parallel CNN algorithm. MapReduce is a scalable and fault-tolerant data processing tool that was developed to provide significant improvements in large-scale data-intensive applications in clusters. A MapReduce-based CNN (MCNN) is developed in this work to tackle the task of image classification. In addition, the proposed MCNN adopted the idea of adding dropout layers in the networks to tackle the overfitting problem. Close examination of the implementation of MCNN as well as how the proposed algorithm accelerates learning are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medi...As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medium server or PC with a virtual environment to use as a single server resource and filter malicious email using machine learning techniques,we used a Hadoop MapReduce framework and Naïve Bayes among machine learning methods for malicious email filtering.Naïve Bayes was selected because it is one of the top machine learning methods(Support Vector Machine(SVM),Naïve Bayes,K-Nearest Neighbor(KNN),and Decision Tree)in terms of execution time and accuracy.Malicious email was filtered with MapReduce programming using the Naïve Bayes technique,which is a supervised machine learning method,in a Hadoop framework with optimized performance and also with the Python program technique with the Naïve Bayes technique applied in a bare metal server environment with the Hadoop environment not applied.According to the results of a comparison of the accuracy and predictive error rates of the two methods,the Hadoop MapReduce Naïve Bayes method improved the accuracy of spam and ham email identification 1.11 times and the prediction error rate 14.13 times compared to the non-Hadoop Python Naïve Bayes method.展开更多
文摘Deep learning (DL) techniques, more specifically Convolutional Neural Networks (CNNs), have become increasingly popular in advancing the field of data science and have had great successes in a wide array of applications including computer vision, speech, natural language processing, etc. However, the training process of CNNs is computationally intensive and has high computational cost, especially when the dataset is huge. To overcome these obstacles, this paper takes advantage of distributed frameworks and cloud computing to develop a parallel CNN algorithm. MapReduce is a scalable and fault-tolerant data processing tool that was developed to provide significant improvements in large-scale data-intensive applications in clusters. A MapReduce-based CNN (MCNN) is developed in this work to tackle the task of image classification. In addition, the proposed MCNN adopted the idea of adding dropout layers in the networks to tackle the overfitting problem. Close examination of the implementation of MCNN as well as how the proposed algorithm accelerates learning are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
文摘As the importance of email increases,the amount of malicious email is also increasing,so the need for malicious email filtering is growing.Since it is more economical to combine commodity hardware consisting of a medium server or PC with a virtual environment to use as a single server resource and filter malicious email using machine learning techniques,we used a Hadoop MapReduce framework and Naïve Bayes among machine learning methods for malicious email filtering.Naïve Bayes was selected because it is one of the top machine learning methods(Support Vector Machine(SVM),Naïve Bayes,K-Nearest Neighbor(KNN),and Decision Tree)in terms of execution time and accuracy.Malicious email was filtered with MapReduce programming using the Naïve Bayes technique,which is a supervised machine learning method,in a Hadoop framework with optimized performance and also with the Python program technique with the Naïve Bayes technique applied in a bare metal server environment with the Hadoop environment not applied.According to the results of a comparison of the accuracy and predictive error rates of the two methods,the Hadoop MapReduce Naïve Bayes method improved the accuracy of spam and ham email identification 1.11 times and the prediction error rate 14.13 times compared to the non-Hadoop Python Naïve Bayes method.