期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mapping relationship analysis of welding assembly properties for thin-walled parts with finite element and machine learning algorithm
1
作者 Pan Minghui Liao Wenhe +1 位作者 Xing Yan Tang Wencheng 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期126-136,共11页
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ... The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future. 展开更多
关键词 parallel T-shaped thin-walled parts welding assembly property finite element analysis mapping relationship machine learning algorithm
下载PDF
Data-driven mapping-relationship mining between hardness and mechanical properties of dual-phase titanium alloys via random forest and statistical analysis
2
作者 Hai-Chao Gong Qun-Bo Fan +7 位作者 Hong-Mei Zhang Xing-Wang Cheng Wen-Qiang Xie Kai Chen Lin Yang Jun-Jie Zhang Bing-Qiang Wei Shun Xu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期829-841,共13页
In order to accelerate the research on the property optimization of titanium alloy based on high-throughput methods,it is necessary to reveal the relationship between hardness and other mechanical properties which is ... In order to accelerate the research on the property optimization of titanium alloy based on high-throughput methods,it is necessary to reveal the relationship between hardness and other mechanical properties which is still unclear.In this work,taking Ti20C alloy as research object,almost all the microstructure of dual-phase titanium alloys were covered by traversing over 100 heat treatment schemes.Then,massive experiments including microstructure characterization and performance test were conducted,obtaining 51,590 pieces of microstructure data and 3591 pieces of mechanical property data.Subsequently,based on large-scale data-driven technology,the quantitative mapping relationship between hardness and other mechanical properties was deeply discussed.The results of random forest models showed that the correlation between hardness(H)and Charpy impact energy(A_(k))(or elongation,A)was hardly dependent on the microstructure types,while the relationship between H and tensile strength(R_(m))(or yield strength,R_(p0.2))was highly dependent on microstructure types.Specifically,combined with statistical analysis,it was found that the relationship between H and Ak(or A)were negatively linear.Interestingly,the relationship between H and strength was positively linear for equiaxed microstructure,and strength was linked to d^(−1/2)(d,equivalent circle diameter)ofα-grains in the form of classical Hall–Petch formula;but for other microstructures,the relationships were quadratic.Furthermore,the above rules were nearly the same in the rolling direction and transverse direction.Finally,a"four-quadrant partition map"between H and R_(p0.2)/R_(m) was established as a versatile material-screening tool,which can provide guidance for on-demand selection of titanium alloys. 展开更多
关键词 Dual-phase titanium alloy DATA-DRIVEN HARDNESS mapping relationship
原文传递
Research on Clothing Simulation Design Based on Three-Dimensional Image Analysis 被引量:1
3
作者 Wenyao Zhu Xue Li Young-Mi Shon 《Computers, Materials & Continua》 SCIE EI 2020年第10期945-962,共18页
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio... Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation. 展开更多
关键词 3D image analysis clothing simulation feature extraction optimal solution mapping relationship collision detection grid layout cutting effect
下载PDF
Product Data Model for Performance-driven Design
4
作者 Guang-Zhong Hu Xin-Jian Xu +2 位作者 Shou-Ne Xiao Guang-Wu Yang Fan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1112-1122,共11页
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency... When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design. 展开更多
关键词 Complex product design Performance driven Data model mapping relationship High-speed train
下载PDF
THE FUZZY NUMERICAL VALUE SIMULATION OF NANOMETER ELECTRO-THERMAL IN HOT-WORKING
5
作者 P. He 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期731-735,共5页
The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, te... The fuzzy numerical value analysis method is adopted for the first time, which solves the problem of nanometer electro-thermal in filming process, The key technique is embodied by controlling the time distribution, temperature and press in the filming process. The concrete technique of filming is showed by establishing the fuzzy mumbership function of above three indexes, which improves the precision of the materials of nanometer electro-thermal in hot-working. At the same time, the principles of the fuzzy relationship mapping inversion (FRMI) is put forward, Therefore, the standardization and continuity can be met. 展开更多
关键词 fuzzy control FRMI (fuzzy relationship mapping inversion) nanometer electro-thermal fuzzy numerical value simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部