Nucleate boiling is a very efficient method for generating high heat transfer rates from solid surfaces; however, the fundamental physical mechanisms governing nucleate boiling heat transfer are not well understood. T...Nucleate boiling is a very efficient method for generating high heat transfer rates from solid surfaces; however, the fundamental physical mechanisms governing nucleate boiling heat transfer are not well understood. The heat transfer mechanisms around stationary and moving bubbles on very thin microwires were analyzed numerically to evaluate the effect of the bubble motion on the heat transfer from the wire surface. The numerical analysis accurately models the experimentally observed bubble movement and fluid velocities. The analytical model includes the effects of the Marangoni flow around the bubble and the evaporation and condensation within the bubble. The analysis shows that the heat transfer was significantly enhanced by the Marangoni flow around the outside of the bubble which transfers at least twice as much en- ergy from the wire as the heat transfer directly from the wire to the bubble. The enhanced heat transfer due to the Marangoni flow was evident for both stationary and moving bubbles. The moving bubbles also created a wake that further enhanced the heat transfer from the wire. Since the Marangoni number for water is greater than for ethanol for the same conditions, the Marangoni flow and, hence, the bubble velocities are predicted to be greater in water than in ethanol.展开更多
The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable incl...The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).展开更多
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli...The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.展开更多
Single-walled carbon nanotubes(SWCNTs)present excellent electronic and mechanical properties desired in wearable and flexible devices.The preparation of SWCNT films is the first step for fabricating various devices.Th...Single-walled carbon nanotubes(SWCNTs)present excellent electronic and mechanical properties desired in wearable and flexible devices.The preparation of SWCNT films is the first step for fabricating various devices.This work developed a scalable and feasible method to assemble SWCNT thin films on water surfaces based on Marangoni flow induced by surface tension gradient.The films possess a large area of 40 cm×30 cm(extensible),a tunable thickness of 15∼150 nm,a high transparency of up to 96%,and a decent conductivity.They are ready to be directly transferred to various substrates,including flexible ones.Flexible strain sensors were fabricated with the films on flexible substrates.These sensors worked with high sensitivity and repeatability.By realizing multi-functional human motion sensing,including responding to voices,monitoring artery pulses,and detecting knuckle and muscle actions,the assembled SWCNT films demonstrated the potential for application in smart devices.展开更多
The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It...The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.展开更多
基金Supported by the National Natural Science Foundation of China (No. 50476014)
文摘Nucleate boiling is a very efficient method for generating high heat transfer rates from solid surfaces; however, the fundamental physical mechanisms governing nucleate boiling heat transfer are not well understood. The heat transfer mechanisms around stationary and moving bubbles on very thin microwires were analyzed numerically to evaluate the effect of the bubble motion on the heat transfer from the wire surface. The numerical analysis accurately models the experimentally observed bubble movement and fluid velocities. The analytical model includes the effects of the Marangoni flow around the bubble and the evaporation and condensation within the bubble. The analysis shows that the heat transfer was significantly enhanced by the Marangoni flow around the outside of the bubble which transfers at least twice as much en- ergy from the wire as the heat transfer directly from the wire to the bubble. The enhanced heat transfer due to the Marangoni flow was evident for both stationary and moving bubbles. The moving bubbles also created a wake that further enhanced the heat transfer from the wire. Since the Marangoni number for water is greater than for ethanol for the same conditions, the Marangoni flow and, hence, the bubble velocities are predicted to be greater in water than in ethanol.
文摘The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).
基金Supported by the National Natural Science Foundation of China under Grant No 51305080
文摘The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
基金supported by National Natural Science Foundation of China(22120102004,21631002)Ministry of Science and Technology of China(2016YFA0201904)+3 种基金Shenzhen KQTD Project(KQTD20180411143400981)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD-202001)JSPS KAKENHI(JP20H00220)and by JST,CREST(JPMJCR20B5),Japan,。
文摘Single-walled carbon nanotubes(SWCNTs)present excellent electronic and mechanical properties desired in wearable and flexible devices.The preparation of SWCNT films is the first step for fabricating various devices.This work developed a scalable and feasible method to assemble SWCNT thin films on water surfaces based on Marangoni flow induced by surface tension gradient.The films possess a large area of 40 cm×30 cm(extensible),a tunable thickness of 15∼150 nm,a high transparency of up to 96%,and a decent conductivity.They are ready to be directly transferred to various substrates,including flexible ones.Flexible strain sensors were fabricated with the films on flexible substrates.These sensors worked with high sensitivity and repeatability.By realizing multi-functional human motion sensing,including responding to voices,monitoring artery pulses,and detecting knuckle and muscle actions,the assembled SWCNT films demonstrated the potential for application in smart devices.
文摘The impact of the Marangoni convection over the thin film flow on an expanding cylinder has been examined in this study. The diverse effect of the embedded constraints has been detected during the liquid film flow. It has been examined that the behavior of the physical parameters altered after the small intervals and diverse from the traditional approach. The similarity variables have been utilized to alter the basic flow equations into the nonlinear ordinary differential equations. The result of the transformed equations is computed by BVPh 2.0 package. The performance of different constraints, for flow motion and temperature distributions are plotted and conferred. It has been observed that under the Marangoni convection the impact of the physical parameters varies after the point of inflection and the diverse impact of the embedding constraints provide space for the variation of the point of inflection for the desired spray analysis.