期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride 被引量:2
1
作者 Sandeep Kumar Jena Jogeshwar Sahu +2 位作者 Geetikamayee Padhy Swagatika Mohanty Ajit Dash 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1203-1215,共13页
The present paper reports the effective utilization of marble sludge powder(MSP)for the recovery of potash values from waste mica scrap using chlorination roasting-water leaching method.Characterization studies indica... The present paper reports the effective utilization of marble sludge powder(MSP)for the recovery of potash values from waste mica scrap using chlorination roasting-water leaching method.Characterization studies indicated the presence of dolomite as the major mineral phase in MSP,whereas muscovite and quartz were observed in the mica sample.The acid leaching studies suggest a maximum of 22%potash recovery under conditions:4 M H2SO4 acid,particle size of^100μm,stirring speed of 600 r/min,leaching temperature of 75℃,and leaching time of 90 min.The chlorination roasting-water leaching process was adopted to achieve the lowest level of 80%-90%potash recovery.The optimum conditions for the recovery of^93%potash from mica(~8.6wt%K2O)requires 900℃ roasting temperature,30 min roasting time,and 1:1:0.75 mass ratio of mica:MSP:NaCl.The roasting temperature and amount of NaCl are found to be the most important factors for the recovery process.The reaction mechanism suggests the formation of different mineral phases,including sylvite(KCl),wollastonite,kyanite,and enstatite,during roasting,which were confirmed by X-ray diffraction(XRD)analyses and scanning electron microscopy(SEM)morphologies.The MSP-blended NaCl additive is more effective for potash recovery compared with the other reported commercial roasting additives. 展开更多
关键词 potash recovery mica scrap marble sludge powder chlorination roasting water leaching
下载PDF
Lightweight Concrete Using Local Industrial By-product
2
作者 Deborah Olukemi Olanrewaj u 《Journal of Mechanics Engineering and Automation》 2014年第6期505-510,共6页
Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% ce... Construction is one of the largest users of energy, material resources and water and it is a formidable polluter. One of the major materials used in construction is concrete and ordinary concrete contains about 12% cement which is a major producer of greenhouse gas in the world. The use of waste materials as partial replacement of cement in concrete reduces greenhouse gases, frees up land fill space, and reduces raw materials consumption. This contributes towards sustainable development, as in a sustainable society, nature is not subject to systematically increasing concentrations of substances extracted from the earth's crust. This research work explores the possibility of replacing some percentage of cement in concrete with marble sludge powder to produce lightweight concrete. This was achieved by determining the compressive strength and some hardened properties of concrete like sorptivity and carbonation with marble sludge. The results so far have been able to prove that lightweight concrete can be produced when some percentage of cement is replaced with this waste. 展开更多
关键词 Lightweight concrete marble sludge FILLER CARBONATION permeation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部