Letλ=(λ_(1),...,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβwhileβvarying with n.Setγ=lim_(n→∞)n/p_(1)andσ=lim_(n→∞)p_(1)/p_(2).In this paper,supposing lim_(n→∞)log_(n)/β_(n)=0,we prove...Letλ=(λ_(1),...,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβwhileβvarying with n.Setγ=lim_(n→∞)n/p_(1)andσ=lim_(n→∞)p_(1)/p_(2).In this paper,supposing lim_(n→∞)log_(n)/β_(n)=0,we prove that the empirical measures of different scaledλconverge weakly to a Wachter distribution,a Marchenko–Pastur law and a semicircle law corresponding toσγ>0,σ=0 orγ=0,respectively.We also offer a full large deviation principle with speedβn^(2)and a good rate function to precise the speed of these convergences.As an application,the strong law of large numbers for the extremal eigenvalues ofβ-Jacobi ensembles is obtained.展开更多
基金Supported by NSFC(Grant Nos.12171038,11871008)985 Projects。
文摘Letλ=(λ_(1),...,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβwhileβvarying with n.Setγ=lim_(n→∞)n/p_(1)andσ=lim_(n→∞)p_(1)/p_(2).In this paper,supposing lim_(n→∞)log_(n)/β_(n)=0,we prove that the empirical measures of different scaledλconverge weakly to a Wachter distribution,a Marchenko–Pastur law and a semicircle law corresponding toσγ>0,σ=0 orγ=0,respectively.We also offer a full large deviation principle with speedβn^(2)and a good rate function to precise the speed of these convergences.As an application,the strong law of large numbers for the extremal eigenvalues ofβ-Jacobi ensembles is obtained.