In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectatio...In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectation values of the atomic variables using specific initial conditions. We examine the effects of different parameters on the scaled atomic Wehrl entropy and marginal atomic Wehrl density. We observe an interesting monotonic relation between the different physical quantities for different values of the initial atomic position and detuning parameter.展开更多
Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlin...Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlinear coherent states (NLCS) are distinct from those of the new odd NLCS and imply that the new EONLCS always exhibit some different nonclassical effects. Finally, with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics, the tomograms of the new EONLCS are calculated. This is a new way of obtaining the tomogram function.展开更多
In this contribution we study a superposition of two finite dimensional trio coherent states (FTCS). The state is regarded as a correlated three-mode state in finite dimensional bases. The framework of Pegg and Barnet...In this contribution we study a superposition of two finite dimensional trio coherent states (FTCS). The state is regarded as a correlated three-mode state in finite dimensional bases. The framework of Pegg and Barnett formalism, and the phase distribution in addition to the Poissonian distribution are examined. It is shown that the eigenvalue of the difference of the photon number (the q-parameter) is responsible for the non-classical phenomenon. Furthermore, the quasi-probability distribution functions (the Wigner and Q-functions) are also discussed. In this case and for the Wigner function the non-classical behavior is only reported for the odd values of the q-parameter.展开更多
The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique...The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique where the Liouville space is briefly expanded with an additional (virtual) space only within ultrashort subintervals. This tremendously reduces the cost of time-consuming calculations. We implement our technique for an example of a charged particle in both harmonic and anharmonic potentials. The temporal evolutions of the probability for the particle being in the ground state are obtained numerically and compared to the analytical solutions. We further discuss the physics insight of this technique based on a thought-experiment. Successive processes intrinsically “hitchhiking” via virtual space in discrete ultrashort time duration, are the hallmark of our technique. We believe that this technique has potential for solving numerous problems which often pose a challenge when using the traditional approach based on time-ordered exponentials.展开更多
文摘In this paper, we study the dynamics of the atomic inversion, scaled atomic Wehrl entropy and marginal atomic Wehrl density for a single two-level atom interacting with SU(1,1) quantum system. We obtain the expectation values of the atomic variables using specific initial conditions. We examine the effects of different parameters on the scaled atomic Wehrl entropy and marginal atomic Wehrl density. We observe an interesting monotonic relation between the different physical quantities for different values of the initial atomic position and detuning parameter.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No Y2008A23)the Natural Science Foundation of Liaocheng University (Grant No X071049)
文摘Using a numerical computational method, quasiprobability distributions of new kinds of even and odd nonlinear coherent states (EONLCS) are investigated. The results show that the distributions of the new even nonlinear coherent states (NLCS) are distinct from those of the new odd NLCS and imply that the new EONLCS always exhibit some different nonclassical effects. Finally, with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics, the tomograms of the new EONLCS are calculated. This is a new way of obtaining the tomogram function.
文摘In this contribution we study a superposition of two finite dimensional trio coherent states (FTCS). The state is regarded as a correlated three-mode state in finite dimensional bases. The framework of Pegg and Barnett formalism, and the phase distribution in addition to the Poissonian distribution are examined. It is shown that the eigenvalue of the difference of the photon number (the q-parameter) is responsible for the non-classical phenomenon. Furthermore, the quasi-probability distribution functions (the Wigner and Q-functions) are also discussed. In this case and for the Wigner function the non-classical behavior is only reported for the odd values of the q-parameter.
文摘The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique where the Liouville space is briefly expanded with an additional (virtual) space only within ultrashort subintervals. This tremendously reduces the cost of time-consuming calculations. We implement our technique for an example of a charged particle in both harmonic and anharmonic potentials. The temporal evolutions of the probability for the particle being in the ground state are obtained numerically and compared to the analytical solutions. We further discuss the physics insight of this technique based on a thought-experiment. Successive processes intrinsically “hitchhiking” via virtual space in discrete ultrashort time duration, are the hallmark of our technique. We believe that this technique has potential for solving numerous problems which often pose a challenge when using the traditional approach based on time-ordered exponentials.