The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the qua...The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the quantumto-classical transition in phase space based on the trace distance.The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time-dependent evolution for both the quantum and classical domains.As an example,the time-dependent harmonic oscillator is considered to illustrate the result.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11775040)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China(Grant No.2019L0527)the Fundamental Research Fund for the Central Universities of China(Grant No.DUT18LK45).
文摘The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the quantumto-classical transition in phase space based on the trace distance.The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time-dependent evolution for both the quantum and classical domains.As an example,the time-dependent harmonic oscillator is considered to illustrate the result.