Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural ...Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same ratios of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consolidated compression shear tests with simulated in-situ confined pressure give results much better than those of uncomfined compression shear tests.展开更多
In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se...In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.展开更多
Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this d...Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin.展开更多
A compilation of available marine deposition data from offshore S-SE China reveals evidence of rifting and breakup of the South China Sea(SCS) during the Paleogene. Marine deposition started earlier in the Paleocene i...A compilation of available marine deposition data from offshore S-SE China reveals evidence of rifting and breakup of the South China Sea(SCS) during the Paleogene. Marine deposition started earlier in the Paleocene in the East China Sea(ECS)-Taiwan region before expanding southwestward into the SCS region in the middle Eocene. Our data indicate the existence of an elongated Paleogene China Sea in these areas stretching along the northeasterly structural belts, probably as part of the marginal western paleo-Pacific. The southwestward shift of marine influence in the middle Eocene was responding to a period of intensive rifting and subsidence in the SCS region, while the sea in the ECS-Taiwan region started to shrink and shoal after the late Eocene, likely associated with local breakup and initial spreading in the Taiwan-Taixinan Basin area. The accumulation of hemipelagic sediments at ODP 1148 and IODP U1435 from near the continent-ocean boundary and at many other shelf-slope sites was in response to a large-scale breakup 34 to 33 Ma ago, subsequently leading to the birth of the SCS in the Oligocene.展开更多
Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, a...Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, air masses are influenced by pollution outflows from the Asian continent. The size and elemental composition of dry deposited particles were investigated using a scanning electron microscope. Number-size distributions of these particles were approximately lognormal. Under clear conditions, the mode size was about 5.0 μm, with a mean diameter of 6.9 μm. Under cloudy and foggy conditions, the mean diameters were 5.7 and 6.0 μm, respectively, but the mode sizes were vague. Non-mixed mineral particles, sea salt, and mixed mineral-sea salt particles were the major particle types. Correspondingly, Al and Si were the most frequently detected elements. Frequencies of K-, Ca-, and S-containing particles were highest under foggy conditions, while the frequency of Na-containing particles was lowest. These results indicate that fog favored sulfate production on the particles and led to the deposited mineral particles more abundant in secondary salt, suggesting the importance to consider the dependence of the comoosition of deoosited mineral narticles on weather as well as narticle size.展开更多
基金This research project is financially supported by Jiangsu Transportation Scientific Funds (Grant No. 02Y015)
文摘Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the natural marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same ratios of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consolidated compression shear tests with simulated in-situ confined pressure give results much better than those of uncomfined compression shear tests.
基金National Planed Major S&T Projects(No.2011ZX05002-002)Scientific Research Project of Sinopec(No.P03011)Key Technology Tacking Project,Shengli Oilfield Company,Sinopec(No.YKK0808)
文摘In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.
基金supported by the"national Key R&D Program of China"(grant No.2017YFC0602801)geological survey project of"Investigation and Evaluation of the Potash Deposit Prospect in West China"(grant No.DD20160054)
文摘Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.91228203&41576059)
文摘A compilation of available marine deposition data from offshore S-SE China reveals evidence of rifting and breakup of the South China Sea(SCS) during the Paleogene. Marine deposition started earlier in the Paleocene in the East China Sea(ECS)-Taiwan region before expanding southwestward into the SCS region in the middle Eocene. Our data indicate the existence of an elongated Paleogene China Sea in these areas stretching along the northeasterly structural belts, probably as part of the marginal western paleo-Pacific. The southwestward shift of marine influence in the middle Eocene was responding to a period of intensive rifting and subsidence in the SCS region, while the sea in the ECS-Taiwan region started to shrink and shoal after the late Eocene, likely associated with local breakup and initial spreading in the Taiwan-Taixinan Basin area. The accumulation of hemipelagic sediments at ODP 1148 and IODP U1435 from near the continent-ocean boundary and at many other shelf-slope sites was in response to a large-scale breakup 34 to 33 Ma ago, subsequently leading to the birth of the SCS in the Oligocene.
基金This study was supported by the Education Bureau of Hebei Province for Excellent Young Scholars (YQ2014020), the Natu- ral Science Foundation of Hebei Province (D2016402120) and the National Natural Science Foundation of China (41541038). The Chinese Scholarship Council (CSC) supported Wei Hu's research at the Prefectural University of Kumamoto, Japan. We thank Ms. Jin-hui Shi and Ms. Cheng-cheng Chen for their assistance with particle collection, and Nicholas James O'Connor for his assistance with editing.
文摘Dry deposited particles, larger than 1.3 μm, were collected under clear, cloudy, and foggy conditions during a cruise, traversing the Yellow Sea and the East China Sea from 23 March to 8 April 2011. In these areas, air masses are influenced by pollution outflows from the Asian continent. The size and elemental composition of dry deposited particles were investigated using a scanning electron microscope. Number-size distributions of these particles were approximately lognormal. Under clear conditions, the mode size was about 5.0 μm, with a mean diameter of 6.9 μm. Under cloudy and foggy conditions, the mean diameters were 5.7 and 6.0 μm, respectively, but the mode sizes were vague. Non-mixed mineral particles, sea salt, and mixed mineral-sea salt particles were the major particle types. Correspondingly, Al and Si were the most frequently detected elements. Frequencies of K-, Ca-, and S-containing particles were highest under foggy conditions, while the frequency of Na-containing particles was lowest. These results indicate that fog favored sulfate production on the particles and led to the deposited mineral particles more abundant in secondary salt, suggesting the importance to consider the dependence of the comoosition of deoosited mineral narticles on weather as well as narticle size.