期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
1
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
下载PDF
Effect of Coupled Torsional and Transverse Vibrations of the Marine Propulsion Shaft System
2
作者 Akile Nese Halilbese Cong Zhang Osman Azmi Ozsoysal 《Journal of Marine Science and Application》 CSCD 2021年第2期201-212,共12页
In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified versio... In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems. 展开更多
关键词 Coupled torsional-transverse vibrations Forced vibrations marine propulsion shaft system Cross-section eccentricity Jeffcott rotor Coupled vibration in rotor system
下载PDF
Supercritical CO_(2) Cycles for Nuclear-Powered Marine Propulsion:Preliminary Conceptual Design and Off-Design Performance Assessment 被引量:1
3
作者 LI Zhaozhi SHI Mingzhu +1 位作者 SHAO Yingjuan ZHONG Wenqi 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期328-347,共20页
Using the efficient,space-saving,and flexible supercritical carbon dioxide(sCO_(2)) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships.The purpose of this paper is to design a... Using the efficient,space-saving,and flexible supercritical carbon dioxide(sCO_(2)) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships.The purpose of this paper is to design and compare sCO_(2) cycle power systems suitable for nuclear-powered ships.Considering the characteristics of nuclear-powered ships,this paper uses different indicators to comprehensively evaluate the efficiency,cost,volume,and partial load performance of several nuclear-powered sCO_(2) cycles.Four load-following strategies are also designed and compared.The results show that the partial cooling cycle is most suitable for nuclear-powered ships because it offers both high thermal efficiency and low volume and cost,and can maintain relatively high thermal efficiency at partial loads.Additionally,the new load-following strategy that adjusts the turbine speed can keep the compressor away from the surge line,making the cycle more flexible and efficient compared to traditional inventory and turbine bypass strategies. 展开更多
关键词 supercritical CO_(2)cycle NUCLEAR marine propulsion off-design performance
原文传递
Coupling Mathematical Model of Marine Propulsion Shafting in Steady Operating State
4
作者 WEN Xiaofei ZHOU Ruiping +1 位作者 YUAN Qiang LEI Junsong 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第4期463-469,共7页
According to the analysis of the problems about the operation of marine propulsion shafting in steady state,the geometric and mechanical coupling relationships between marine propulsion shafting and oil film of bearin... According to the analysis of the problems about the operation of marine propulsion shafting in steady state,the geometric and mechanical coupling relationships between marine propulsion shafting and oil film of bearings in two-dimensional space are established,and a coupling mathematical model of the marine propulsion shafting in steady operating state is proposed.Then the simulation of a real ship is carried out,and the variation laws of some special parameters such as bearing load and deflection are obtained.Finally,the results of simulation are verified by experimental data of a real ship,which can provide the mathematical model and analysis method for the research on the characteristics of ship propulsion shafting condition in steady state. 展开更多
关键词 marine propulsion shafting steady state coupling model numerical simulation
原文传递
Dynamic Analysis of Propulsion Mechanism Directly Driven by Wave Energy for Marine Mobile Buoy 被引量:8
5
作者 YU Zhenjiang ZHENG Zhongqiang +1 位作者 YANG Xiaoguang CHANG Zongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期710-715,共6页
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many... Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB. 展开更多
关键词 propulsion mechanism marine mobile buoy dynamic model hydrodynamics Morision's equation
下载PDF
Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating
6
作者 Vedran Mrzljak Ivan Lorencin +1 位作者 Nikola Anđelić Zlatan Car 《Journal of Marine Science and Application》 CSCD 2021年第1期117-127,共11页
The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy anal... The thermodynamic(energy and exergy)analysis of a condensate heating system,its segments,and components from a marine steam propulsion plant with steam reheating is performed in this paper.It is found that energy analysis of any condensate heating system should be avoided because it is highly influenced by the measuring equipment accuracy and precision.All the components from the observed marine condensate heating system have energy destructions lower than 3 kW,while the energy efficiencies of this system are higher than 99%.The exergy efficiency of closed condensate heaters continuously increases from the lowest to the highest steam pressures(from 70.10%to 92.29%).The ambient temperature variation between 5℃and 45℃notably influences the exergy efficiency change of both low pressure heaters and the low pressure segment equal to 31.61%,12.37%,and 18.35%,respectively. 展开更多
关键词 Condensate heating system marine steam propulsion plant Steam reheating Thermodynamic analysis Energy and exergy analyses Segmental analysis Ambient temperature change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部