In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of...In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3).展开更多
Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken....Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up.展开更多
基金Supported by the PetroChina Science and Technology Project(2021DJ0501,2018A-0105).
文摘In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3).
文摘Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up.