Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petr...Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.展开更多
Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multipl...Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multiple tectonic events.To investigate the effectiveness of preservation conditions,it is of great importance to understand the controls of key tectonic events on the dynamic evolution of cap rocks.This paper discusses the controls of Late Jurassic-Early Cretaceous(J3-K1) tectonic event on source and cap rocks in marine sequences in South China based on the relationships between J3-K1 tectonic event and the burial history types of the marine sequences,the hydrocarbon generation processes of marine source rocks,the sealing evolution of cap rocks,the preservation of hydrocarbon accumulations,and the destruction of paleo-oil pools.The study has the following findings.In the continuously subsiding and deeply buried areas during the J3-K1 period,marine source rocks had been generating hydrocarbons for over a long period of time and hydrocarbon generation ended relatively late.At the same time,the sealing capacity of the overburden cap rocks had been constantly strengthened so that hydrocarbons could be preserved.In the areas which suffered compressional deformation,folding and thrusting,uplifting and denudation in J3-K1,the burial history was characterized by an early uplifting and the hydrocarbon generation by marine source rocks ended(or suspended) during the J3-K1 period.The sealing capacity of the cap rocks was weakened or even vanished.Thus the conditions for preserving the hydrocarbon accumulations were destroyed.The continuously subsiding and deeply buried areas during the J3-K1 period are the strategic precincts of the petroleum exploration in marine sequences in South China.展开更多
基金Supported by National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(42225303,42372162,42102146)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)Basic and Forward-Looking Major Technology Project of China National Petroleum Corporation(2023ZZ0203)。
文摘Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.
基金supported by NationalNatural Science Foundation of China (Grant No. 40974048)National Basic Research Program of China (Grant No. 2005CB422108)National Science & Technology Special Project (Grant No. 2008ZX05005)
文摘Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multiple tectonic events.To investigate the effectiveness of preservation conditions,it is of great importance to understand the controls of key tectonic events on the dynamic evolution of cap rocks.This paper discusses the controls of Late Jurassic-Early Cretaceous(J3-K1) tectonic event on source and cap rocks in marine sequences in South China based on the relationships between J3-K1 tectonic event and the burial history types of the marine sequences,the hydrocarbon generation processes of marine source rocks,the sealing evolution of cap rocks,the preservation of hydrocarbon accumulations,and the destruction of paleo-oil pools.The study has the following findings.In the continuously subsiding and deeply buried areas during the J3-K1 period,marine source rocks had been generating hydrocarbons for over a long period of time and hydrocarbon generation ended relatively late.At the same time,the sealing capacity of the overburden cap rocks had been constantly strengthened so that hydrocarbons could be preserved.In the areas which suffered compressional deformation,folding and thrusting,uplifting and denudation in J3-K1,the burial history was characterized by an early uplifting and the hydrocarbon generation by marine source rocks ended(or suspended) during the J3-K1 period.The sealing capacity of the cap rocks was weakened or even vanished.Thus the conditions for preserving the hydrocarbon accumulations were destroyed.The continuously subsiding and deeply buried areas during the J3-K1 period are the strategic precincts of the petroleum exploration in marine sequences in South China.