The alternating marine and nonmarine coal-bearing Lower Cretaceous successions are well developed in eastern Heilongjiang, northeastern China, including the Jixi Group in the west and the Longzhaogou Group in the east...The alternating marine and nonmarine coal-bearing Lower Cretaceous successions are well developed in eastern Heilongjiang, northeastern China, including the Jixi Group in the west and the Longzhaogou Group in the east. The correlation of these two lithostratigraphic groups with the nonmarine Jehol Group is important for dating the exceptionally well-preserved Jehol Biota. The Early Cretaceous marine fossils recovered from eastern Heilongjiang include ammonites, bivalves, radiolarians, foraminifers and dinocysts. During the early Aptian transgression the ammonite fauna entered the Hulin and Mishan areas and the bivalve Aucellina fauna in the Jixi area. This enables correlation of the marine lower part of the Chengzihe Formation of the Jixi Group with the Qihulin Formation of the Longzhaogou Group.展开更多
The shales in the 2nd Member of Shanxi formation in the east margin of the Ordos Basin were deposited in a marine-nonmarine transitional environment during the Permian.Based on the recent breakthroughs in the shale ga...The shales in the 2nd Member of Shanxi formation in the east margin of the Ordos Basin were deposited in a marine-nonmarine transitional environment during the Permian.Based on the recent breakthroughs in the shale gas exploration and theoretical understandings on the shale gas of the study area,with a comparison to marine shale gas in the Sichuan Basin and marine-nonmarine transitional shale gas in the U.S.,this study presents the geological characteristics and development potential of marine-nonmarine transitional gas in the study area.Four geological features are identified in the 2nd Member of the Shanxi Formation in the study area has:(1)stable sedimentary environment is conductive to deposition of widely distributed organic shale;(2)well-developed micro-and nanoscale pore and fracture systems,providing good storage capacity;(3)high content of brittle minerals such as quartz,leading to effectively reservoir fracturing;and(4)moderate reservoir pressure and relatively high gas content,allowing efficient development of shale gas.The 2nd Member of Shanxi Formation in the east margin of Ordos Basin is rich in shale gas resource.Three favorable zones,Yulin-Linxian,Shiloubei-Daning-Jixian,and Hancheng-Huangling are developed,with a total area of 1.28×104 km2 and resources between 1.8×1012 and 2.9×1012m3,indicating a huge exploration potential.Tests of the 2nd Member of Shanxi Formation in vertical wells show that the favorable intervals have stable gas production and high reserves controlled by single well,good recoverability and fracability.This shale interval has sufficient energy,stable production capacity,and good development prospects,as evidenced by systematic well testing.The east margin of the Ordos Basin has several shale intervals in the Shanxi and Taiyuan formations,and several coal seams interbedded,so collaborative production of different types of natural gas in different intervals can be considered.The study results can provide reference for shale gas exploration and development and promote the rapid exploitation of shale gas in China.展开更多
文摘The alternating marine and nonmarine coal-bearing Lower Cretaceous successions are well developed in eastern Heilongjiang, northeastern China, including the Jixi Group in the west and the Longzhaogou Group in the east. The correlation of these two lithostratigraphic groups with the nonmarine Jehol Group is important for dating the exceptionally well-preserved Jehol Biota. The Early Cretaceous marine fossils recovered from eastern Heilongjiang include ammonites, bivalves, radiolarians, foraminifers and dinocysts. During the early Aptian transgression the ammonite fauna entered the Hulin and Mishan areas and the bivalve Aucellina fauna in the Jixi area. This enables correlation of the marine lower part of the Chengzihe Formation of the Jixi Group with the Qihulin Formation of the Longzhaogou Group.
基金Supported by the China National Science and Technology Major Project(2017ZX05035,2016ZX05041)
文摘The shales in the 2nd Member of Shanxi formation in the east margin of the Ordos Basin were deposited in a marine-nonmarine transitional environment during the Permian.Based on the recent breakthroughs in the shale gas exploration and theoretical understandings on the shale gas of the study area,with a comparison to marine shale gas in the Sichuan Basin and marine-nonmarine transitional shale gas in the U.S.,this study presents the geological characteristics and development potential of marine-nonmarine transitional gas in the study area.Four geological features are identified in the 2nd Member of the Shanxi Formation in the study area has:(1)stable sedimentary environment is conductive to deposition of widely distributed organic shale;(2)well-developed micro-and nanoscale pore and fracture systems,providing good storage capacity;(3)high content of brittle minerals such as quartz,leading to effectively reservoir fracturing;and(4)moderate reservoir pressure and relatively high gas content,allowing efficient development of shale gas.The 2nd Member of Shanxi Formation in the east margin of Ordos Basin is rich in shale gas resource.Three favorable zones,Yulin-Linxian,Shiloubei-Daning-Jixian,and Hancheng-Huangling are developed,with a total area of 1.28×104 km2 and resources between 1.8×1012 and 2.9×1012m3,indicating a huge exploration potential.Tests of the 2nd Member of Shanxi Formation in vertical wells show that the favorable intervals have stable gas production and high reserves controlled by single well,good recoverability and fracability.This shale interval has sufficient energy,stable production capacity,and good development prospects,as evidenced by systematic well testing.The east margin of the Ordos Basin has several shale intervals in the Shanxi and Taiyuan formations,and several coal seams interbedded,so collaborative production of different types of natural gas in different intervals can be considered.The study results can provide reference for shale gas exploration and development and promote the rapid exploitation of shale gas in China.