期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
1
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy markov chain monte carlo sampling algorithms
下载PDF
Bayesian zero-failure reliability modeling and assessment method for multiple numerical control(NC) machine tools 被引量:2
2
作者 阚英男 杨兆军 +3 位作者 李国发 何佳龙 王彦鹍 李洪洲 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2858-2866,共9页
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus... A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated. 展开更多
关键词 Weibull distribution reliability modeling BAYES zero failure numerical control(NC) machine tools markov chain monte carlo(MCMC) algorithm
下载PDF
Effective Bandwidth Estimation in Data Networks: An Analysis for Two Traffic Characterizations
3
作者 José Bavio Carina Fernández Beatriz Marrón 《Electrical Science & Engineering》 2021年第1期23-29,共7页
The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the chan... The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one. 展开更多
关键词 Effective bandwidth markov fluid model Kernel estimation Data networking monte carlo markov chain algorithms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部