This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t...This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.展开更多
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M...Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.展开更多
目的 针对妇幼卫生纵向数据的任意缺失模式,采用多重填补方法进行填补,探求最佳填补结果,以便对数据作进一步分析与研究。方法 运用SAS9.0 ,采用多重填补方法Markov China Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。...目的 针对妇幼卫生纵向数据的任意缺失模式,采用多重填补方法进行填补,探求最佳填补结果,以便对数据作进一步分析与研究。方法 运用SAS9.0 ,采用多重填补方法Markov China Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果 填补5次所得结果最优。结论 多重填补方法可以处理有缺失数据资料中的许多普遍问题,可提高统计效率,尤其是MCMC模型在处理复杂的缺失数据上,优势明显。展开更多
Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significa...Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance.展开更多
The objective of this paper is to evaluate the reliability of a system in its different states (absence of failures, partial failure and total failure) and to propose actions to improve this reliability by an approach...The objective of this paper is to evaluate the reliability of a system in its different states (absence of failures, partial failure and total failure) and to propose actions to improve this reliability by an approach based on Monte Carlo simulation. It consists of a probabilistic evaluation based on Markov Chains. In order to achieve this goal, the functionalities of Markov Chains and Monte Carlo simulation steps are deployed. The application is made on a production system. .展开更多
目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算...目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。展开更多
A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-...A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly aniso- tropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Mar- kov chain Monte Carlo inversion method of PP- and PS- wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inver- sion scheme taking only the PP-wave into account.展开更多
This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method...This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient.展开更多
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in...We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude.展开更多
With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With sev...With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With several competing computational methods in recent times, methods with little or no iterations are generally preferred as they tend to consume less computer memory resources and time. This paper presents the application of simple and efficient Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axisymmetric homogeneous domains. Two cases of axisymmetric homogeneous problems are considered. Simulation results for analytical, finite difference and MCMC solutions are reported. The results obtained from the MCMC method agree with analytical and finite difference solutions. However, the MCMC method has the advantage that its implementation is simple and fast.展开更多
现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC...现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。展开更多
Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using exten...Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.展开更多
Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Bei...Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Beijing,a novel method based on Monte Carlo model is conducted.In order to fully exploit the value of PM2.5 data,we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively.The results show that these data are both approximately normal distribution.On the basis of the results,a Monte Carlo method can be applied to establish a probability model of normal distribution based on two different variables and random sampling numbers can also be generated by computer.Through a large number of simulation experiments,the average monthly concentration of PM2.5 in Beijing and the general trend of PM2.5 can be obtained.By comparing the errors between the real data and the predicted data,the Monte Carlo method is reliable in predicting the PM2.5 monthly mean concentration in the area.This study also provides a feasible method that may be applied in other studies to predict other pollutants with large scale time series data.展开更多
文摘This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.
基金the sponsorship of the National Basic Research Program of China (973 Program,2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China (2011ZX05014-001-010HZ,2011ZX05014-001-006-XY570) for their funding of this research
文摘Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
文摘目的 针对妇幼卫生纵向数据的任意缺失模式,采用多重填补方法进行填补,探求最佳填补结果,以便对数据作进一步分析与研究。方法 运用SAS9.0 ,采用多重填补方法Markov China Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果 填补5次所得结果最优。结论 多重填补方法可以处理有缺失数据资料中的许多普遍问题,可提高统计效率,尤其是MCMC模型在处理复杂的缺失数据上,优势明显。
文摘Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance.
文摘The objective of this paper is to evaluate the reliability of a system in its different states (absence of failures, partial failure and total failure) and to propose actions to improve this reliability by an approach based on Monte Carlo simulation. It consists of a probabilistic evaluation based on Markov Chains. In order to achieve this goal, the functionalities of Markov Chains and Monte Carlo simulation steps are deployed. The application is made on a production system. .
文摘目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。
基金sponsorship of the National Natural Science Foundation of China (No.41674130)the National Basic Research Program of China (973 Program,Nos.2013CB228604,2014CB239201)+1 种基金the National Oil and Gas Major Projects of China (Nos.2016ZX05027004-001,2016ZX05002005-009)the Fundamental Research Funds for the Central Universities (15CX08002A) for their funding in this research
文摘A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly aniso- tropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Mar- kov chain Monte Carlo inversion method of PP- and PS- wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inver- sion scheme taking only the PP-wave into account.
文摘This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10674016,10875013the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant No.20080027005
文摘We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude.
文摘With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With several competing computational methods in recent times, methods with little or no iterations are generally preferred as they tend to consume less computer memory resources and time. This paper presents the application of simple and efficient Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axisymmetric homogeneous domains. Two cases of axisymmetric homogeneous problems are considered. Simulation results for analytical, finite difference and MCMC solutions are reported. The results obtained from the MCMC method agree with analytical and finite difference solutions. However, the MCMC method has the advantage that its implementation is simple and fast.
文摘现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。
基金Supported by the National Science Foundation of China (No. 29736170, No. 20025618) and the Doctoral Research Foundation by Ministry of Education of China (No. 1999025103). Additional support provided by the Visiting Researcher Foundation of University La
文摘Covering a wide range of bulk densities, density profiles for hard-sphere chain fluids (HSCFs) with chain length of 3,4,8,20,32 and 64 confined between two surfaces were obtained by Monte Carlo simulations using extended continuum configurational-bias (ECCB) method. It is shown that the enrichment of beads near surfaces is happened at high densities due to the bulk packing effect, on the contrary, the depletion is revealed at low densities owing to the configurational entropic contribution. Comparisons with those calculated by density functional theory presented by Cai et al. indicate that the agreement between simulations and predictions is good. Compressibility factors of bulk HSCFs calculated using volume fractions at surfaces were also used to test the reliability of various equations of state of HSCFs by different authors.
文摘Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Beijing,a novel method based on Monte Carlo model is conducted.In order to fully exploit the value of PM2.5 data,we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively.The results show that these data are both approximately normal distribution.On the basis of the results,a Monte Carlo method can be applied to establish a probability model of normal distribution based on two different variables and random sampling numbers can also be generated by computer.Through a large number of simulation experiments,the average monthly concentration of PM2.5 in Beijing and the general trend of PM2.5 can be obtained.By comparing the errors between the real data and the predicted data,the Monte Carlo method is reliable in predicting the PM2.5 monthly mean concentration in the area.This study also provides a feasible method that may be applied in other studies to predict other pollutants with large scale time series data.
基金National Natural Science Foundation of China(11161031)Natural Science Foundation of Inner Mongolia(2010MS0116,2009MS0107)Higher School Science and Technology Research Project of Inner Mongolia(NJ10085)~~