This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t...This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.展开更多
This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method...This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient.展开更多
载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高...载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高机动和极限工况下的载荷谱编制问题,基于某坦克行进间身管位移数据样本,分别使用基于雨流矩阵及核密度估计的非参数外推法、基于马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)的信号重构法以及Metropolis-Hastings(简称MH)直接采样法进行了载荷频次外推,并针对MCMC的信号重构法提出了一种改良马尔可夫稳态分布的求解方法。应用所提出的频次-极值相结合的载荷外推总体方法对坦克身管位移进行了频次扩充与极值预测,并结合实车试验结果验证了方法的准确性。研究结果表明:改良的马尔可夫稳态分布求解方法是有效的;在样本长度足够、外推精度要求不甚高的情况下,MH直接采样法可作为一种新的频次外推方法;运用频次-极值相结合的载荷外推总体方法所得结果精度较高;形成的频次外推法选用原则对于载荷谱编制过程中的方法选择具有一定的指导意义。研究工作为装备载荷谱的高质量编制提供了成熟的技术路线和参考。展开更多
An algorithm of continuous stage space MCMC method for solving algebra equation f(x) =0 is given.It is available for the case that the sign of f(x) changes frequently or the derivative f′(x) does not exist in th...An algorithm of continuous stage space MCMC method for solving algebra equation f(x) =0 is given.It is available for the case that the sign of f(x) changes frequently or the derivative f′(x) does not exist in the neighborhood o f the root,while the Newton method is hard to work.Let n be the number of random variables created by computer in our algorithm.Then after m=O(n) transactions from the initial value x 0,x * can be got such that |f(x *)|<e -cm |f(x 0)| by choosing suitable positive constant c. An illustration is also given with the discussion of convergence by adjusting the parameters in the algorithm.展开更多
The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is propose...The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.展开更多
文摘This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.
文摘This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient.
文摘载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高机动和极限工况下的载荷谱编制问题,基于某坦克行进间身管位移数据样本,分别使用基于雨流矩阵及核密度估计的非参数外推法、基于马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)的信号重构法以及Metropolis-Hastings(简称MH)直接采样法进行了载荷频次外推,并针对MCMC的信号重构法提出了一种改良马尔可夫稳态分布的求解方法。应用所提出的频次-极值相结合的载荷外推总体方法对坦克身管位移进行了频次扩充与极值预测,并结合实车试验结果验证了方法的准确性。研究结果表明:改良的马尔可夫稳态分布求解方法是有效的;在样本长度足够、外推精度要求不甚高的情况下,MH直接采样法可作为一种新的频次外推方法;运用频次-极值相结合的载荷外推总体方法所得结果精度较高;形成的频次外推法选用原则对于载荷谱编制过程中的方法选择具有一定的指导意义。研究工作为装备载荷谱的高质量编制提供了成熟的技术路线和参考。
基金Supported by the National Natural Science Foundation of China(70 1 71 0 0 8)
文摘An algorithm of continuous stage space MCMC method for solving algebra equation f(x) =0 is given.It is available for the case that the sign of f(x) changes frequently or the derivative f′(x) does not exist in the neighborhood o f the root,while the Newton method is hard to work.Let n be the number of random variables created by computer in our algorithm.Then after m=O(n) transactions from the initial value x 0,x * can be got such that |f(x *)|<e -cm |f(x 0)| by choosing suitable positive constant c. An illustration is also given with the discussion of convergence by adjusting the parameters in the algorithm.
基金Partially supported by the National Natural Science Foundation of China (No.60172028).
文摘The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.