期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
神经网络识别和Markov链预测的商用车APU控制策略
1
作者 王君琦 李勇滔 +5 位作者 郑伟光 张彦会 陈子邮 许恩永 李育方 王善超 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第5期600-608,共9页
为改善商用车空气处理系统的燃油经济性,提出一种以基于电磁阀控制的电控空气处理单元(APU)控制策略,进行了Simulink系统仿真实验。该策略具有基础、低压和高压等3种工作模式;基于发动机工况识别和预测方法;利用Matlab/Simulink搭建车... 为改善商用车空气处理系统的燃油经济性,提出一种以基于电磁阀控制的电控空气处理单元(APU)控制策略,进行了Simulink系统仿真实验。该策略具有基础、低压和高压等3种工作模式;基于发动机工况识别和预测方法;利用Matlab/Simulink搭建车辆模型和空气处理系统模型;并构建了神经网络模式识别和Markov链预测控制模型对发动机的运行工况进行识别分类和需求扭矩百分比预测。结果表明:仿真实验验证了工况分类和电磁阀控制策略的有效性。在中国重型商用车瞬态工况(C-WTVC)下,与相同储气筒初始气压条件的机械APU相比较,应用该控制策略的电控APU的功率消耗下降480Wh,下降比率34.7%,燃油经济性显著改善。 展开更多
关键词 商用车 燃油经济性 空气处理单元(APU) 电磁阀控制 控制策略 模式识别 markov
下载PDF
Variance Optimization for Continuous-Time Markov Decision Processes
2
作者 Yaqing Fu 《Open Journal of Statistics》 2019年第2期181-195,共15页
This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space... This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper. 展开更多
关键词 CONTINUOUS-TIME markov Decision Process Variance optimalITY of Average reward optimal POLICY of Variance POLICY ITERATION
下载PDF
基于阶次小波包与Markov链模型的转子早期故障诊断 被引量:5
3
作者 王国庆 牛伟 +2 位作者 成娟 翟正军 郭阳明 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第3期466-471,共6页
针对转子启动过程中振动信号表现为非平稳、非高斯特征及传统诊断方法精度不高的现状,将阶次小波包和Markov链模型引入转子的早期故障诊断中,提出了一种新的自适应故障诊断模型。首先利用阶次跟踪算法对瞬态振动信号重采样,得到等角度... 针对转子启动过程中振动信号表现为非平稳、非高斯特征及传统诊断方法精度不高的现状,将阶次小波包和Markov链模型引入转子的早期故障诊断中,提出了一种新的自适应故障诊断模型。首先利用阶次跟踪算法对瞬态振动信号重采样,得到等角度分布诊断信号;其次采用小波包对该信号分解——重构,提取其在各频带的能量特征向量,通过Markov链模型对其进行预测;最后通过故障实例验证,结果表明:将阶次小波包变换和Markov链模型相结合进行故障诊断是可行而有效的。 展开更多
关键词 阶次跟踪 小波包 markov链模型 粒子群算法 故障诊断
下载PDF
随机平稳策略下半Markov决策过程的仿真优化算法
4
作者 代桂平 唐昊 奚宏生 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第4期547-551,共5页
基于性能势理论和等价Markov过程方法,研究了一类半Markov决策过程(SMDP)在参数化随机平稳策略下的仿真优化算法,并简要分析了算法的收敛性.通过SMDP的等价Markov过程,定义了一个一致化Markov链,然后根据该一致化Markov链的单个样本轨... 基于性能势理论和等价Markov过程方法,研究了一类半Markov决策过程(SMDP)在参数化随机平稳策略下的仿真优化算法,并简要分析了算法的收敛性.通过SMDP的等价Markov过程,定义了一个一致化Markov链,然后根据该一致化Markov链的单个样本轨道来估计SMDP的平均代价性能指标关于策略参数的梯度,以寻找最优(或次优)策略.文中给出的算法是利用神经元网络来逼近参数化随机平稳策略,以节省计算机内存,避免了“维数灾”问题,适合于解决大状态空间系统的性能优化问题.最后给出了一个仿真实例来说明算法的应用. 展开更多
关键词 随机平稳策略 等价markov过程 一致化markov 神经元动态规划 仿真优化
下载PDF
一种合作Markov决策系统 被引量:1
5
作者 雷莹 许道云 《计算机技术与发展》 2020年第12期8-14,共7页
在机器学习中,强化学习是一个重要的研究领域。Markov决策过程(MDP)是强化学习的重要基础,在一般的Markov决策系统中,只考虑一个智能体的学习演化。但目前诸多问题中只考虑单个智能体的学习演化有一定的局限性,越来越多的应用中都涉及... 在机器学习中,强化学习是一个重要的研究领域。Markov决策过程(MDP)是强化学习的重要基础,在一般的Markov决策系统中,只考虑一个智能体的学习演化。但目前诸多问题中只考虑单个智能体的学习演化有一定的局限性,越来越多的应用中都涉及到多个智能体。进而引入一种带有两个智能体的联合Markov决策系统(CMDP),该系统适用于两个智能体之间合作决策的学习演化。智能体之间存在合作或博弈两种类型,文中重点研究合作类型的CMDP,在此类学习模型中,智能体交替执行行为,以社会价值作为求优准则,寻找最优策略对(π*0,π*1),共同完成目标任务。进一步给出了在联合Markov系统中寻找最优策略对的算法,其根本任务是寻找一个最优策略对(π*0,π*1),形成一个合作系统CMDP(π*0,π*1),且系统模型可以进一步扩充到多个智能体的联合决策系统。 展开更多
关键词 强化学习 智能体 联合markov决策过程 最优策略对 算法
下载PDF
随机情景下MTS/MTO串联生产系统库存控制策略
6
作者 林兵 冯毅 《工业工程》 2024年第3期98-105,共8页
该研究探讨供应链库存控制策略及生产协同重要性。将备货型生产(make-to-stock, MTS)与按订单生产(make-to-order, MTO)两级串联模式应用于高效响应性供应链的生产与库存联合控制问题并刻画其最优策略。针对订单到达服从泊松过程和生产... 该研究探讨供应链库存控制策略及生产协同重要性。将备货型生产(make-to-stock, MTS)与按订单生产(make-to-order, MTO)两级串联模式应用于高效响应性供应链的生产与库存联合控制问题并刻画其最优策略。针对订单到达服从泊松过程和生产时间服从指数分布情形,通过马尔科夫过程转移速率一致化技术建立起马尔科夫决策过程模型并得到相应贝尔曼最优方程。基于最优费用函数结构性质,将最优生产与库存控制策略刻画为依赖系统状态的基本库存策略。随后,将模型拓展到批量生产情形。数值算例验证了最优策略单调结构性质,给出不同情境下的最优策略绩效。同时将最优策略与两种常见策略进行比较。基础情境下,容限策略偏离最优7.36%,短视策略偏离最优25.73%。其他情境下,最优策略都明显优于另两种策略。 展开更多
关键词 供应链 串联生产系统 库存控制 马尔科夫决策过程 最优策略
下载PDF
Load-Aware Offloading Strategy in Two-Tier Heterogeneous Network 被引量:5
7
作者 Jianyuan Feng Zhiyong Feng Zhiqing Wei 《China Communications》 SCIE CSCD 2016年第8期148-158,共11页
Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy lo... Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations.Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading. 展开更多
关键词 heterogeneous networks offloading strategies load-aware Poisson point process markov chain throughput maximization CSMA
下载PDF
Optimization of dynamic sequential test strategy for equipment health management 被引量:3
8
作者 Shuming Yang Jing Qiu Guanjun Liu Peng Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期71-77,共7页
Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential te... Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective. 展开更多
关键词 equipment health management (EHM) dynamic sequential test strategy (DSTS) partially observable semi-markov decision process (POSMDP) optimal equation.
下载PDF
STRONG N-DISCOUNT AND FINITE-HORIZON OPTIMALITY FOR CONTINUOUS-TIME MARKOV DECISION PROCESSES 被引量:1
9
作者 ZHU Quanxin GUO Xianping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第5期1045-1063,共19页
This paper studies the strong n(n =—1,0)-discount and finite horizon criteria for continuoustime Markov decision processes in Polish spaces.The corresponding transition rates are allowed to be unbounded,and the rewar... This paper studies the strong n(n =—1,0)-discount and finite horizon criteria for continuoustime Markov decision processes in Polish spaces.The corresponding transition rates are allowed to be unbounded,and the reward rates may have neither upper nor lower bounds.Under mild conditions,the authors prove the existence of strong n(n =—1,0)-discount optimal stationary policies by developing two equivalence relations:One is between the standard expected average reward and strong—1-discount optimality,and the other is between the bias and strong 0-discount optimality.The authors also prove the existence of an optimal policy for a finite horizon control problem by developing an interesting characterization of a canonical triplet. 展开更多
关键词 Continuous-time markov decision process expected average reward criterion finite-horizon optimality Polish space strong n-discount optimality
原文传递
Modeling the dynamic optimal advertising in stochastic condition
10
作者 RongDU QiyingHU ZhiqingMENG 《控制理论与应用(英文版)》 EI 2004年第1期102-104,共3页
An effort to model the dynamic optimal advertising was made with the uncertainty of sales responses in consideration. The problem of dynamic advertising was depicted as a Markov decision process with two state variabl... An effort to model the dynamic optimal advertising was made with the uncertainty of sales responses in consideration. The problem of dynamic advertising was depicted as a Markov decision process with two state variables. When a firm launches an advertising campaign, it may predict the probability that the campaign will obtain the sales réponse. This probability was chosen as one state variable. Cumulative sales volume was chosen as another state variable which varies randomly with advertising. The only decision variable was advertising expenditure. With these variables, a multi-stage Markov decision process model was formulat ed. On the basis of some propositions the model was analyzed. Some analytical results about the optimal strategy have been derived, and their practical implications have been explained. 展开更多
关键词 Stochastic optimal model ADVERTISING markov decision process optimal strategies
下载PDF
TOTAL REWARD CRITERIA FOR UNCONSTRAINED/CONSTRAINED CONTINUOUS-TIME MARKOV DECISION PROCESSES
11
作者 Xianping GUO Lanlan ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期491-505,共15页
This paper studies denumerable continuous-time Markov decision processes with expected total reward criteria. The authors first study the unconstrained model with possible unbounded transition rates, and give suitable... This paper studies denumerable continuous-time Markov decision processes with expected total reward criteria. The authors first study the unconstrained model with possible unbounded transition rates, and give suitable conditions on the controlled system's primitive data under which the authors show the existence of a solution to the total reward optimality equation and also the existence of an optimal stationary policy. Then, the authors impose a constraint on an expected total cost, and consider the associated constrained model. Basing on the results about the unconstrained model and using the Lagrange multipliers approach, the authors prove the existence of constrained-optimal policies under some additional conditions. Finally, the authors apply the results to controlled queueing systems. 展开更多
关键词 Constrained-optimal policy continuous-time markov decision process optimal policy total reward criterion unbounded reward/cost and transition rates.
原文传递
基于分配策略优化算法的智能防空任务分配
12
作者 刘家义 王刚 +2 位作者 付强 郭相科 王思远 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1705-1716,共12页
针对分配策略最优算法在大规模场景中求解速度不足的问题,基于马尔可夫决策过程,将深度强化学习与其相结合,将大规模防空任务分配问题进行智能化求解。根据大规模防空作战特点,利用马尔可夫决策过程对智能体进行建模,构建数字战场仿真环... 针对分配策略最优算法在大规模场景中求解速度不足的问题,基于马尔可夫决策过程,将深度强化学习与其相结合,将大规模防空任务分配问题进行智能化求解。根据大规模防空作战特点,利用马尔可夫决策过程对智能体进行建模,构建数字战场仿真环境;设计防空任务分配智能体,通过近端策略优化算法,在数字战场仿真环境中进行训练。以大规模防空对抗任务为例,验证了该方法的可行性和优越性。 展开更多
关键词 分配策略优化算法 任务分配 马尔可夫决策过程 深度强化学习 智能体
下载PDF
A New Theoretical Framework of Pyramid Markov Processes for Blockchain Selfish Mining 被引量:2
13
作者 Quanlin Li Yanxia Chang +1 位作者 Xiaole Wu Guoqing Zhang 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2021年第6期667-711,共45页
In this paper,we provide a new theoretical framework of pyramid Markov processes to solve some open and fundamental problems of blockchain selfish mining under a rigorous mathematical setting.We first describe a more ... In this paper,we provide a new theoretical framework of pyramid Markov processes to solve some open and fundamental problems of blockchain selfish mining under a rigorous mathematical setting.We first describe a more general model of blockchain selfish mining with both a two-block leading competitive criterion and a new economic incentive mechanism.Then we establish a pyramid Markov process and show that it is irreducible and positive recurrent,and its stationary probability vector is matrix-geometric with an explicitly representable rate matrix.Also,we use the stationary probability vector to study the influence of orphan blocks on the waste of computing resource.Next,we set up a pyramid Markov reward process to investigate the long-run average mining profits of the honest and dishonest mining pools,respectively.As a by-product,we build one-dimensional Markov reward processes and provide some new interesting interpretation on the Markov chain and the revenue analysis reported in the seminal work by Eyal and Sirer(2014).Note that the pyramid Markov(reward)processes can open up a new avenue in the study of blockchain selfish mining.Thus we hope that the methodology and results developed in this paper shed light on the blockchain selfish mining such that a series of promising research can be developed potentially. 展开更多
关键词 Blockchain Proof of Work selfish mining main chain pyramid markov process pyramid markov reward process phase-type distribution Matrix-geometric solution
原文传递
Modeling the Dynamics of the Random Demand Inventory Management System
14
作者 Jeremie Ndikumagenge Jean Pierre Ntayagabiri 《Journal of Applied Mathematics and Physics》 2023年第2期438-447,共10页
At any given time, a product stock manager is expected to carry out activities to check his or her holdings in general and to monitor the condition of the stock in particular. He should monitor the level or quantity a... At any given time, a product stock manager is expected to carry out activities to check his or her holdings in general and to monitor the condition of the stock in particular. He should monitor the level or quantity available of a given product, of any item. On the basis of the observation made in relation to the movements of previous periods, he may decide to order or not a certain quantity of products. This paper discusses the applicability of discrete-time Markov chains in making relevant decisions for the management of a stock of COTRA-Honey products. A Markov chain model based on the transition matrix and equilibrium probabilities was developed to help managers predict the likely state of the stock in order to anticipate procurement decisions in the short, medium or long term. The objective of any manager is to ensure efficient management by limiting overstocking, minimising the risk of stock-outs as much as possible and maximising profits. The determined Markov chain model allows the manager to predict whether or not to order for the period following the current period, and if so, how much. 展开更多
关键词 Ergodic markov Chain Irreducible markov Chain MODELING OPTIMIZATION Stochastic processes
下载PDF
Strategy optimization for controlled Markov process with descriptive complexity constraint 被引量:1
15
作者 JIA QingShan ZHAO QianChuan 《Science in China(Series F)》 2009年第11期1993-2005,共13页
Due to various advantages in storage and implementation, simple strategies are usually preferred than complex strategies when the performances are close. Strategy optimization for controlled Markov process with descri... Due to various advantages in storage and implementation, simple strategies are usually preferred than complex strategies when the performances are close. Strategy optimization for controlled Markov process with descriptive complexity constraint provides a general framework for many such problems. In this paper, we first show by examples that the descriptive complexity and the performance of a strategy could be independent, and use the F-matrix in the No-Free-Lunch Theorem to show the risk that approximating complex strategies may lead to simple strategies that are unboundedly worse in cardinal performance than the original complex strategies. We then develop a method that handles the descriptive complexity constraint directly, which describes simple strategies exactly and only approximates complex strategies during the optimization. The ordinal performance difference between the resulting strategies of this selective approximation method and the global optimum is quantified. Numerical examples on an engine maintenance problem show how this method improves the solution quality. We hope this work sheds some insights to solving general strategy optimization for controlled Markov process with descriptive complexity constraint. 展开更多
关键词 strategy optimization controlled markov process descriptive complexity
原文传递
风力发电机组可靠性建模与维修策略优化 被引量:26
16
作者 李大字 冯园园 +2 位作者 刘展 楚纪正 靳其兵 《电网技术》 EI CSCD 北大核心 2011年第9期122-127,共6页
风力发电的快速发展使得风电机组结构越来越复杂,故障率也随之提高。为了提高风力发电机组的可靠性,提出了一种风力发电机组的可靠性优化策略。以双馈风力发电机为例,运用马尔可夫过程数学模型和可靠性理论建立风力发电机组的可靠性模型... 风力发电的快速发展使得风电机组结构越来越复杂,故障率也随之提高。为了提高风力发电机组的可靠性,提出了一种风力发电机组的可靠性优化策略。以双馈风力发电机为例,运用马尔可夫过程数学模型和可靠性理论建立风力发电机组的可靠性模型,在此基础上构造风电机组老化、故障和维修的网络结构图,从而得到风电机组可靠性最优时的维修策略。 展开更多
关键词 风力发电机组 可靠性模型 可靠性优化 维修策 马尔可夫过程
下载PDF
改进萤火虫算法及其收敛性分析 被引量:12
17
作者 张大力 夏红伟 +2 位作者 张朝兴 马广程 王常虹 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1291-1300,共10页
萤火虫算法因具有结构简单、控制参数少、易于实现的特点而得到广泛的关注和应用,但其易陷入局部最优导致过早收敛,从而影响寻优精度。针对这一问题,本文在位置更新规则中加入随机扰动因子,并剔除了冗余的随机项,以提高算法搜索能力;引... 萤火虫算法因具有结构简单、控制参数少、易于实现的特点而得到广泛的关注和应用,但其易陷入局部最优导致过早收敛,从而影响寻优精度。针对这一问题,本文在位置更新规则中加入随机扰动因子,并剔除了冗余的随机项,以提高算法搜索能力;引入位置置换变异和差分进化算法中的最优变异策略,在保持种群多样性的同时,增强算法跳出局部最优的能力。采用马尔可夫过程证明了算法以概率1收敛到全局最优。利用基准函数和装箱问题对算法进行仿真测试,结果表明,改进后的算法能够有效跳出局部最优,对给出的所有问题均能找到理论最优解,寻优精度和成功率有明显提升。 展开更多
关键词 萤火虫算法 随机扰动 变异策略 马尔可夫过程 函数优化 装箱问题
下载PDF
基于工序能力指数的零件选配优化模型 被引量:6
18
作者 林巨广 杨兰和 +2 位作者 刘明周 吴俊峰 张凤琴 《农业机械学报》 EI CAS CSCD 北大核心 2007年第4期130-134,117,共6页
建立了基于工序能力指数的零件选配优化模型,通过提高工序能力来相应地提高选配精度,从而使选配工序趋向柔性化,降低废品率,提高生产效率和装配质量。在降低选配工序成本的基础上,通过Markov链随机状态的过程描述了选配公差等指标,构建... 建立了基于工序能力指数的零件选配优化模型,通过提高工序能力来相应地提高选配精度,从而使选配工序趋向柔性化,降低废品率,提高生产效率和装配质量。在降低选配工序成本的基础上,通过Markov链随机状态的过程描述了选配公差等指标,构建了选配精度、公差和工序能力指数间的工序能力指数最大及选配工序成本最小化的多目标约束模型,并使用序列无约束最优化技术SUMT对基于动态随机多目标规划的选配约束非线性模型进行优化求解,最后通过实例对该模型的有效性给予了验证。 展开更多
关键词 选配 工序能力指数 markov SUMT 优化模型
下载PDF
飞机推出控制停机位等待惩罚策略 被引量:7
19
作者 张亚平 廉冠 +3 位作者 邢志伟 罗晓 罗谦 莫琼 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第3期39-45,共7页
为减少飞机离港过程中调度者的工作负担,降低滑行成本及污染排放,在飞机离港过程传统N控制策略基础上,提出一种基于停机位等待惩罚的推出控制策略.这种策略可以为滑行道排队长度搜寻最优阈值,并且要求推出频率随当前滑行道排队长度实时... 为减少飞机离港过程中调度者的工作负担,降低滑行成本及污染排放,在飞机离港过程传统N控制策略基础上,提出一种基于停机位等待惩罚的推出控制策略.这种策略可以为滑行道排队长度搜寻最优阈值,并且要求推出频率随当前滑行道排队长度实时变化.建立以推出成本为目标的推出控制模型及其两种变体形式,设计了一种基于连续时间马尔科夫链的迭代优化算法.首都机场实际推出数据仿真结果表明:所提出的推出控制策略能有效地将滑行等待时间转化为停机位等待时间,总滑行等待时间减少了2 995 min/d,燃油消耗比无推出策略条件下减少44.04%,离港燃油成本大大降低. 展开更多
关键词 航空运输 推出控制策略 马尔科夫优化 滑行过程 惩罚 燃油成本
下载PDF
工程迭代设计中产品族开发过程的研究与建模 被引量:7
20
作者 汪鸣琦 陈荣秋 崔南方 《计算机集成制造系统》 EI CSCD 北大核心 2007年第12期2373-2381,共9页
为了在工程迭代设计中减少新产品开发的提前期,提出了一种基于设计结构矩阵的产品族开发过程模型。在该模型中,基于设计参数间的依赖关系建立设计结构矩阵,并运用路径搜索算法将其整理为包含耦合子矩阵的解耦矩阵。对于其中的耦合子矩阵... 为了在工程迭代设计中减少新产品开发的提前期,提出了一种基于设计结构矩阵的产品族开发过程模型。在该模型中,基于设计参数间的依赖关系建立设计结构矩阵,并运用路径搜索算法将其整理为包含耦合子矩阵的解耦矩阵。对于其中的耦合子矩阵,运用基于马尔可夫链的串行迭代模型计算设计总时间,并运用基因算法优化排序。运用迭代设计的并行模型识别出对耦合关系贡献大的设计模态和设计参数,根据设计模态模块化设计参数,而对耦合关系贡献小的设计参数进行标准化。最后,将设计参数层的标准化和模块化映射到零件层,建立相应的产品族结构,以汽车离合器的设计为例阐述了该过程模型的有效性和应用前景。 展开更多
关键词 迭代设计 设计过程建模 产品开发提前期 设计结构矩阵 产品族 回应式马尔可夫链
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部