期刊文献+
共找到452篇文章
< 1 2 23 >
每页显示 20 50 100
Fast segmentation approach for SAR image based on simple Markov random field 被引量:8
1
作者 Xiaogang Lei Ying Li Na Zhao Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期31-36,共6页
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S... Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach. 展开更多
关键词 SAR image segmentation simple markov random field coarse segmentation maximum a posterior iterated condition mode.
下载PDF
Coherence-coefficient-based Markov random field approach for building segmentation from high-resolution SAR images 被引量:3
2
作者 QIAN Qian WANG Bing-nan +2 位作者 XIANG Mao-sheng FU Xi-kai JIANG Shuai 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期226-235,共10页
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang... Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering. 展开更多
关键词 building segmentation high-resolution synthetic aperture rader (SAR) image markov random field (mrf) coherence coefficient
下载PDF
Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain 被引量:1
3
作者 Hong Fan Yiman Sun +3 位作者 Xiaojuan Zhang Chengcheng Zhang Xiangjun Li Yi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期655-667,共13页
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand... To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation. 展开更多
关键词 undecimated dual-tree complex wavelet MR image segmentation multi-resolution markov random field model
下载PDF
IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES
4
作者 NASSIR H.SALMAN(纳瑟) +2 位作者 LIU Chong-qing (刘重庆) 《Journal of Shanghai Jiaotong university(Science)》 EI 2002年第1期36-41,共6页
This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial esti... This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image. 展开更多
关键词 markov random field(mrf) WATERSHED algorithm K-means edge detection IMAGE segmentation IMAGE analysis
下载PDF
ON MARKOV RANDOM FIELD MODELS FOR SEGMENTATION OF NOISY IMAGES
5
作者 Kuang Jinyu Zhu Junxiu (Department of Radio-Electronics, Beijing Normal University, Beijing 100875) 《Journal of Electronics(China)》 1996年第1期31-39,共9页
Markov random field(MRF) models for segmentation of noisy images are discussed. According to the maximum a posteriori criterion, a configuration of an image field is regarded as an optimal estimate of the original sce... Markov random field(MRF) models for segmentation of noisy images are discussed. According to the maximum a posteriori criterion, a configuration of an image field is regarded as an optimal estimate of the original scene when its energy is minimized. However, the minimum energy configuration does not correspond to the scene on edges of a given image, which results in errors of segmentation. Improvements of the model are made and a relaxation algorithm based on the improved model is presented using the edge information obtained by a coarse-to-fine procedure. Some examples are presented to illustrate the applicability of the algorithm to segmentation of noisy images. 展开更多
关键词 markov random field Gibbs distribution EDGE detection RELAXATION algorithm Image segmentation
下载PDF
Elitist Reconstruction Genetic Algorithm Based on Markov Random Field for Magnetic Resonance Image Segmentation
6
作者 Xin-Yu Du,Yong-Jie Li,Cheng Luo,and De-Zhong Yao the School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu 610054,China 《Journal of Electronic Science and Technology》 CAS 2012年第1期83-87,共5页
In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every ... In this paper, elitist reconstruction genetic algorithm (ERGA) based on Markov random field (MRF) is introduced for image segmentation. In this algorithm, a population of possible solutions is maintained at every generation, and for each solution a fitness value is calculated according to a fitness function, which is constructed based on the MRF potential function according to Metropolis function and Bayesian framework. After the improved selection, crossover and mutation, an elitist individual is restructured based on the strategy of restructuring elitist. This procedure is processed to select the location that denotes the largest MRF potential function value in the same location of all individuals. The algorithm is stopped when the change of fitness functions between two sequent generations is less than a specified value. Experiments show that the performance of the hybrid algorithm is better than that of some traditional algorithms. 展开更多
关键词 Elitist reconstruction genetic algorithm image segmentation markov random field.
下载PDF
Image Dehazing by Incorporating Markov Random Field with Dark Channel Prior 被引量:3
7
作者 XU Hao TAN Yibo +1 位作者 WANG Wenzong WANG Guoyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期551-560,共10页
As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy gro... As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given. 展开更多
关键词 image dehazing dark channel prior markov random field image segmentation
下载PDF
CLOUD IMAGE DETECTION BASED ON MARKOV RANDOM FIELD 被引量:1
8
作者 Xu Xuemei Guo Yuanwei Wang Zhenfei 《Journal of Electronics(China)》 2012年第3期262-270,共9页
In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the bas... In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise. 展开更多
关键词 Cloud image detection markov random field (mrf) Belief Propagation (BP) Iterated Conditional Modes (ICM)
下载PDF
Fusing PLSA model and Markov random fields for automatic image annotation 被引量:1
9
作者 田东平 Zhao Xiaofei Shi Zhongzhi 《High Technology Letters》 EI CAS 2014年第4期409-414,共6页
A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to esti... A novel image auto-annotation method is presented based on probabilistic latent semantic analysis(PLSA) model and multiple Markov random fields(MRF).A PLSA model with asymmetric modalities is first constructed to estimate the joint probability between images and semantic concepts,then a subgraph is extracted served as the corresponding structure of Markov random fields and inference over it is performed by the iterative conditional modes so as to capture the final annotation for the image.The novelty of our method mainly lies in two aspects:exploiting PLSA to estimate the joint probability between images and semantic concepts as well as multiple MRF to further explore the semantic context among keywords for accurate image annotation.To demonstrate the effectiveness of this approach,an experiment on the Corel5 k dataset is conducted and its results are compared favorably with the current state-of-the-art approaches. 展开更多
关键词 automatic image annotation probabilistic latent semantic analysis (PLSA) expectation maximization markov random fields mrf image retrieval
下载PDF
Region-based classification by combining MS segmentation and MRF for POLSAR images 被引量:5
10
作者 Bin Zhang Guorui Ma +1 位作者 Zhi Zhang Qianqing Qin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期400-409,共10页
Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (... Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods. 展开更多
关键词 polarimetric synthetic aperture radar (POLSAR) clas-sification maximum a posteriori (MAP) mean shift (MS) markov random field mrf).
下载PDF
基于MAR-MRF的SAR图像分割方法 被引量:13
11
作者 刘爱平 付琨 +1 位作者 尤红建 刘忠 《电子与信息学报》 EI CSCD 北大核心 2009年第11期2557-2562,共6页
该文提出了一种基于多尺度自回归模型和马尔科夫随机场的SAR图像分割算法。算法引入多尺度自回归模型,建立层与层之间以及相邻层的像素点之间的数学关系,并将此模型与马尔科夫分割算法结合,实现了更为合理的多尺度分割策略。通过相邻尺... 该文提出了一种基于多尺度自回归模型和马尔科夫随机场的SAR图像分割算法。算法引入多尺度自回归模型,建立层与层之间以及相邻层的像素点之间的数学关系,并将此模型与马尔科夫分割算法结合,实现了更为合理的多尺度分割策略。通过相邻尺度的依赖关系及同一尺度空间的马尔可夫性,使用多尺度自回归模型的预测结果来引导精细尺度图像分割,不仅使得最细尺度下的分割迭代次数减少;而且去除了最细尺度下多余的误分类斑块;同时还能够分割出清晰、平滑的目标边界,实现了较满意的SAR图像分割。 展开更多
关键词 SAR图像处理 多尺度自回归 马尔科夫随机场 多尺度分割 吉布斯随机场
下载PDF
基于生成MRF和局部统计特性的红外弱小目标检测算法 被引量:16
12
作者 薛永宏 饶鹏 +3 位作者 樊士伟 张寅生 张涛 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第5期431-436,共6页
红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型,提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法,并采... 红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型,提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法,并采用经典ICM(Iterated conditional mode)方法对图像最优标记结果进行估计.仿真试验结果表明,算法在保证目标标记结果准确率的同时,有效降低了背景的误标记概率;且由于采用局部统计特性进行建模,算法有效降低了模型参数与标记结果间的关联性,提高了最优标记估计的收敛速度. 展开更多
关键词 马尔可夫随机场 局部统计特性 弱小目标检测 标记
下载PDF
基于层次MRF的MR图像分割(英文) 被引量:13
13
作者 张红梅 袁泽剑 +1 位作者 蔡忠闽 卞正中 《软件学报》 EI CSCD 北大核心 2002年第9期1779-1786,共8页
核磁共振图像(MRI)的定量分析在神经疾病的早期治疗中有很重要作用.提出了一种基于层次Markov随机场模型的MRI图像分割新方法.在高层次的标记图象中采用了混合模型,即区域的内部用各向同性均匀MRF来建模,边界用各向异性非均匀MRF来建模... 核磁共振图像(MRI)的定量分析在神经疾病的早期治疗中有很重要作用.提出了一种基于层次Markov随机场模型的MRI图像分割新方法.在高层次的标记图象中采用了混合模型,即区域的内部用各向同性均匀MRF来建模,边界用各向异性非均匀MRF来建模.所以方向性被引入到边界信息中,这样可以更准确的表达标记图象的特性;在低层次的像素图像中,不同区域中像素的灰度分布用不同的高斯纹理来描述.分割问题可以被转换成一种最大后验概率估计问题.采用基于直方图的DAEM算法来估计SNFM参数的全局最优值;并基于MRF先验参数的实际意义,提出一种近似的方法来简化这些参数的估计,实验显示该方法能获得更好的结果. 展开更多
关键词 层次mrf MR图像分割 层次马尔科夫随机场 有限高斯混合体 图像分割 核磁共振图像 最大后验估计 神经疾病 早期治疗
下载PDF
视觉感受与Markov随机场相结合的高分辨率遥感影像分割法 被引量:40
14
作者 许妙忠 丛铭 +2 位作者 万丽娟 解天鹏 朱晓玲 《测绘学报》 EI CSCD 北大核心 2015年第2期198-205,213,共9页
鉴于视觉感受对外界强大的感知与识别能力,模拟视觉神经感知的工作机制,并结合Markov随机场模型,提出一种影像分割方法。首先,分析视觉感知系统的工作机制,将其特性归纳为等级层次性、学习能力、特征检测能力和稀疏编码特性,继而利用小... 鉴于视觉感受对外界强大的感知与识别能力,模拟视觉神经感知的工作机制,并结合Markov随机场模型,提出一种影像分割方法。首先,分析视觉感知系统的工作机制,将其特性归纳为等级层次性、学习能力、特征检测能力和稀疏编码特性,继而利用小波变换、非监督聚类、特征分析和Laplace分布模拟视觉工作机制,然后结合Markov随机场模型实现高分辨率遥感影像的分割。通过不同卫星的真实遥感影像进行了相关试验。试验结果表明本文提出的方法在高分辨率遥感影像分割任务中有非常良好的表现。 展开更多
关键词 视觉感知系统 遥感影像 小波变换 markov随机场 影像分割
下载PDF
基于小波域TS-MRF模型的监督图像分割方法 被引量:7
15
作者 刘国英 王爱民 +1 位作者 陈荣元 秦前清 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第1期91-96,共6页
定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的... 定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性. 展开更多
关键词 小波变换 图像分割 树结构马尔可夫场 小波域树结构马尔可夫场
下载PDF
基于分水岭和改进MRF的马铃薯丁粘连图像在线分割 被引量:10
16
作者 王开义 张水发 +2 位作者 杨锋 刘忠强 王晓锋 《农业机械学报》 EI CAS CSCD 北大核心 2013年第9期187-192,共6页
针对马铃薯丁粘连图像分割问题,提出一种融合分水岭和改进马尔科夫随机场(MRF)的分割方法。分水岭方法可以将粘连图像分割为若干一致性较好的区域,恰好有利于MRF进行标记,同时,针对实际应用中区域势团势能不一致的情况,通过改进势函数确... 针对马铃薯丁粘连图像分割问题,提出一种融合分水岭和改进马尔科夫随机场(MRF)的分割方法。分水岭方法可以将粘连图像分割为若干一致性较好的区域,恰好有利于MRF进行标记,同时,针对实际应用中区域势团势能不一致的情况,通过改进势函数确定MRF的条件概率,使其在全局上具有一致性,从而解决粘连分割问题。用分水岭方法对图像进行初始分割,将图像转化为块状表示。综合考虑初始分割区域的相对高度和面积,用改进的MRF标记正确分割区域和过分割区域。计算过分割区域与邻域的紧密度,选择紧密度最大的邻域并与之合并。试验结果表明,该方法在继承了分水岭方法优点的前提下,解决了过分割的问题,正确率为95%。 展开更多
关键词 马铃薯丁 粘连 图像分割 马尔可夫随机场 分水岭 过分割
下载PDF
SAR海冰的三维区域MRF图像分割 被引量:14
17
作者 姚昆 杨学志 +1 位作者 唐益明 郎文辉 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第11期2551-2557,共7页
SAR海冰图像分割对气候变化研究和航行安全保障具有重要意义。现有MRF分割算法仅能利用到单个极化SAR图像中的信息,易受相干斑噪声和地物信息不全面性的影响,不能准确有效地完成分割。为此,在充分利用单个极化SAR图像相邻区域之间的相... SAR海冰图像分割对气候变化研究和航行安全保障具有重要意义。现有MRF分割算法仅能利用到单个极化SAR图像中的信息,易受相干斑噪声和地物信息不全面性的影响,不能准确有效地完成分割。为此,在充分利用单个极化SAR图像相邻区域之间的相似性的基础上,进一步融入多个极化SAR图像相同区域之间的一致性,由此提出了一种三维区域MRF(3DRMRF)的SAR海冰图像分割算法,能够实现SAR海冰图像的准确分割。通过RADARSAT-2和SIR-C获得的单视全极化SAR海冰图像的实验结果表明:和其他较先进的算法相比,所提出的算法优势明显,特别是具有更高的分割精度。 展开更多
关键词 计算机应用 海冰 合成孔径雷达 图像分割 马尔可夫随机场
下载PDF
基于模糊C均值与Markov随机场的图像分割 被引量:15
18
作者 蔡涛 徐国华 徐筱龙 《计算机工程》 CAS CSCD 北大核心 2007年第20期34-36,39,共4页
针对传统模糊C-均值(FCM)图像分割算法没有考虑图像空间连续性的缺点,提出一种改进的空间约束FCM分割算法。该算法引入了Markov随机场理论中类别标记的伪似然度近似策略,将像素特征域相似性同空间域相邻性有机地结合起来,给出了新的像... 针对传统模糊C-均值(FCM)图像分割算法没有考虑图像空间连续性的缺点,提出一种改进的空间约束FCM分割算法。该算法引入了Markov随机场理论中类别标记的伪似然度近似策略,将像素特征域相似性同空间域相邻性有机地结合起来,给出了新的像素样本聚类目标函数。实验证明,该算法能大大提高分割性能并改善分割的视觉效果。 展开更多
关键词 模糊C均值 markov随机场 伪似然度 图像分割
下载PDF
基于扩散方程和MRF的SAR图像分割 被引量:10
19
作者 贾亚飞 赵凤军 +1 位作者 禹卫东 艾加秋 《电子与信息学报》 EI CSCD 北大核心 2011年第2期363-368,共6页
该文提出了一种基于图像扩散方程和马尔科夫随机场(MRF)的合成孔径雷达(SAR)图像分割方法。在传统MRF算法的基础之中,引入对图像的扩散,用来平滑SAR图像中的噪声,保护图像中的边缘部分,并且加快收敛的速度。首先对输入的SAR图像进行扩散... 该文提出了一种基于图像扩散方程和马尔科夫随机场(MRF)的合成孔径雷达(SAR)图像分割方法。在传统MRF算法的基础之中,引入对图像的扩散,用来平滑SAR图像中的噪声,保护图像中的边缘部分,并且加快收敛的速度。首先对输入的SAR图像进行扩散,通过MRF进行统计,得到图像中各点的后验概率,再对得到的后验概率进行扩散。与传统的MRF算法进行比较,该文的方法较好地去除了误分割斑块,减少算法的运行时间。 展开更多
关键词 SAR图像分割 偏微分方程 马尔科夫随机场(mrf) 后验概率
下载PDF
基于MRF的自适应正则化红外背景杂波抑制算法 被引量:10
20
作者 汪大宝 刘上乾 +1 位作者 寇小明 洪鸣 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期440-444,共5页
针对复杂背景下红外弱小目标检测难题,将背景杂波抑制归结为从原始红外弱小目标图像中重建目标数据的过程,据此提出了一种基于马尔可夫随机场模型(MRF)的自适应正则化滤波算法.该算法采用MRF,建立了红外弱小目标图像的先验概率模型,并... 针对复杂背景下红外弱小目标检测难题,将背景杂波抑制归结为从原始红外弱小目标图像中重建目标数据的过程,据此提出了一种基于马尔可夫随机场模型(MRF)的自适应正则化滤波算法.该算法采用MRF,建立了红外弱小目标图像的先验概率模型,并根据图像的粗糙度设计了新的势函数.在此基础上,采用MRF对背景杂波抑制过程进行正则化处理,从而实现了对红外背景杂波的自适应各向异性抑制.理论分析与实验结果表明,该算法能够随图像局部纹理特征的变化自适应地调整滤波算子结构,从而可在复杂背景下自适应地抑制杂波、增强信号,有效地提高了图像的信噪比,且该算法结构简单,更易于硬件实时实现. 展开更多
关键词 背景杂波抑制 红外弱小目标 马尔可夫随机场 正则化 自适应滤波
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部