A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu...A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.展开更多
Rock mechanical parameters and their uncertainties are critical to rock stability analysis,engineering design,and safe construction in rock mechanics and engineering.The back analysis is widely adopted in rock enginee...Rock mechanical parameters and their uncertainties are critical to rock stability analysis,engineering design,and safe construction in rock mechanics and engineering.The back analysis is widely adopted in rock engineering to determine the mechanical parameters of the surrounding rock mass,but this does not consider the uncertainty.This problem is addressed here by the proposed approach by developing a system of Bayesian inferences for updating mechanical parameters and their statistical properties using monitored field data,then integrating the monitored data,prior knowledge of geotechnical parameters,and a mechanical model of a rock tunnel using Markov chain Monte Carlo(MCMC)simulation.The proposed approach is illustrated by a circular tunnel with an analytical solution,which was then applied to an experimental tunnel in Goupitan Hydropower Station,China.The mechanical properties and strength parameters of the surrounding rock mass were modeled as random variables.The displacement was predicted with the aid of the parameters updated by Bayesian inferences and agreed closely with monitored displacements.It indicates that Bayesian inferences combined the monitored data into the tunnel model to update its parameters dynamically.Further study indicated that the performance of Bayesian inferences is improved greatly by regularly supplementing field monitoring data.Bayesian inference is a significant and new approach for determining the mechanical parameters of the surrounding rock mass in a tunnel model and contributes to safe construction in rock engineering.展开更多
Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delay...Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.展开更多
Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic est...Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.展开更多
This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Car...This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Carlo (MCMC) simulation methods for this model was first introduced by [1], taking into account software reliability data and considering non-informative prior distributions for the parameters of the model. With the non-informative prior distributions presented by these authors, computational difficulties may occur when using MCMC methods. This article considers different prior distributions for the parameters of the proposed model, and studies the effect of such prior distributions on the convergence and accuracy of the results. In order to illustrate the proposed methodology, two examples are considered: the first one has simulated data, and the second has a set of data for pollution issues at a region in Mexico City.展开更多
Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the fi...Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the first two terms of the Boltzmann equation can be discretized by numerical methods such as the finite volume method,the third term can be approximated by DSMC,and DSMC simulates the physical behaviors of gas molecules.However,because of the low sampling efficiency of Monte Carlo Simulation in DSMC,this part usually occupies large portion of computational costs to solve the Boltzmann equation.In this paper,by Markov Chain Monte Carlo(MCMC)and multicore programming,we develop Direct Simulation Multi-Chain Markov Chain Monte Carlo(DSMC3):a fast solver to calculate the numerical solution for the Boltzmann equation.Computational results show that DSMC3 is significantly faster than the conventional method DSMC.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 50609005)Chinese Postdoctoral Science Foundation (No. 2009451116)+1 种基金Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z08255)Foundation of Heilongjiang Province Educational Committee (No. 11451022)
文摘A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.
基金support from the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006)the National Natural Science Foundation of China(Grant Nos.U1765206 and 51874119).
文摘Rock mechanical parameters and their uncertainties are critical to rock stability analysis,engineering design,and safe construction in rock mechanics and engineering.The back analysis is widely adopted in rock engineering to determine the mechanical parameters of the surrounding rock mass,but this does not consider the uncertainty.This problem is addressed here by the proposed approach by developing a system of Bayesian inferences for updating mechanical parameters and their statistical properties using monitored field data,then integrating the monitored data,prior knowledge of geotechnical parameters,and a mechanical model of a rock tunnel using Markov chain Monte Carlo(MCMC)simulation.The proposed approach is illustrated by a circular tunnel with an analytical solution,which was then applied to an experimental tunnel in Goupitan Hydropower Station,China.The mechanical properties and strength parameters of the surrounding rock mass were modeled as random variables.The displacement was predicted with the aid of the parameters updated by Bayesian inferences and agreed closely with monitored displacements.It indicates that Bayesian inferences combined the monitored data into the tunnel model to update its parameters dynamically.Further study indicated that the performance of Bayesian inferences is improved greatly by regularly supplementing field monitoring data.Bayesian inference is a significant and new approach for determining the mechanical parameters of the surrounding rock mass in a tunnel model and contributes to safe construction in rock engineering.
基金supported by the National Science Foundation for Young Scholars of China(6130123471401175)
文摘Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.
文摘Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.
基金partially supported by grants from Capes,CNPq and FAPESP.
文摘This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Carlo (MCMC) simulation methods for this model was first introduced by [1], taking into account software reliability data and considering non-informative prior distributions for the parameters of the model. With the non-informative prior distributions presented by these authors, computational difficulties may occur when using MCMC methods. This article considers different prior distributions for the parameters of the proposed model, and studies the effect of such prior distributions on the convergence and accuracy of the results. In order to illustrate the proposed methodology, two examples are considered: the first one has simulated data, and the second has a set of data for pollution issues at a region in Mexico City.
文摘Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the first two terms of the Boltzmann equation can be discretized by numerical methods such as the finite volume method,the third term can be approximated by DSMC,and DSMC simulates the physical behaviors of gas molecules.However,because of the low sampling efficiency of Monte Carlo Simulation in DSMC,this part usually occupies large portion of computational costs to solve the Boltzmann equation.In this paper,by Markov Chain Monte Carlo(MCMC)and multicore programming,we develop Direct Simulation Multi-Chain Markov Chain Monte Carlo(DSMC3):a fast solver to calculate the numerical solution for the Boltzmann equation.Computational results show that DSMC3 is significantly faster than the conventional method DSMC.