定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的...定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.展开更多
该文提出了一种工作于MPEG压缩域的快速视频目标分割算法。该算法以从MPEG1/2码流中部分解码提取的特征为输入,提取P帧中的运动目标。针对一般的压缩域算法目标边界精度不高的特点,算法采用I帧和P帧中每个块的直流DCT系数和3个交流DCT系...该文提出了一种工作于MPEG压缩域的快速视频目标分割算法。该算法以从MPEG1/2码流中部分解码提取的特征为输入,提取P帧中的运动目标。针对一般的压缩域算法目标边界精度不高的特点,算法采用I帧和P帧中每个块的直流DCT系数和3个交流DCT系数,以及运动补偿信息,重建出P帧的原图像1/16大小的子图像,采用快速平均移聚类得到具有较高边界精度的亮度一致的区域;针对运动向量的噪声容易造成错误检测的缺点,算法结合聚类分析结果和运动块的分布,采用基于马尔可夫随机场的统计标号方法对目标和背景区域进行分类,得到每个P帧的目标掩模。该算法可以得到4×4子块的边界精度,对于CIF格式的码流,在Pentium IV 2GHz平台上可以达到每秒40帧的处理速度。展开更多
针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;...针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;在小波分解的每一尺度上定义相同的树结构MRF来表征医学图像特征信息间的联系。小波域树结构MRF模型包括层间小波系数四叉树结构和层内TS-MRF结构,层间小波系数结构具有一阶Markov性;层内TS-MRF模型,采用Potts模型对节点标号势函数建模,同标号的观测特征用高斯模型建模;最后,通过从低分辨率尺度到高分辨率尺度的递归运算、以及每一分辨率中从分类层次树的顶层向底层的递归来求解最大后验概率,实现医学图像分割。实验结果从视觉效果和定量分析两方面验证表明,文中算法能有效地提取图像的细节信息,比较完整地分割医学图像的目标区域,具有较高的分割精度和鲁棒性。展开更多
研究一种基于小波域三重马尔科夫随机场模型(Markov Random Field,MRF)分割算法的遥感图像分割分析方案,对高分五号卫星提供的遥感图像信息进行MRF图元分割,在图元中使用两次小波域分析进行图像信息加强处理,其结果仍无法在高分卫星工...研究一种基于小波域三重马尔科夫随机场模型(Markov Random Field,MRF)分割算法的遥感图像分割分析方案,对高分五号卫星提供的遥感图像信息进行MRF图元分割,在图元中使用两次小波域分析进行图像信息加强处理,其结果仍无法在高分卫星工具包中实现图像信息的有效读取,所以使用无人机超低空补充遥感的方式进行补充遥测,最终比较植被、水域、道路、建筑在高分卫星工具包下的识别率。革新方案的识别率远高于卫星直接图像的识别率,但对水域、道路的识别率仍较低,经过超低空补充遥感后,识别率达到99%以上,基于小波域三重MRF分割算法对遥感图像处理有积极意义。展开更多
Deep reinforcement learning (deep RL) has the potential to replace classic robotic controllers. State-of-the-art Deep Reinforcement algorithms such as Proximal Policy Optimization, Twin Delayed Deep Deterministic Poli...Deep reinforcement learning (deep RL) has the potential to replace classic robotic controllers. State-of-the-art Deep Reinforcement algorithms such as Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Reinforcement Algorithms, to mention a few, have been investigated for training robots to walk. However, conflicting performance results of these algorithms have been reported in the literature. In this work, we present the performance analysis of the above three state-of-the-art Deep Reinforcement algorithms for a constant velocity walking task on a quadruped. The performance is analyzed by simulating the walking task of a quadruped equipped with a range of sensors present on a physical quadruped robot. Simulations of the three algorithms across a range of sensor inputs and with domain randomization are performed. The strengths and weaknesses of each algorithm for the given task are discussed. We also identify a set of sensors that contribute to the best performance of each Deep Reinforcement algorithm.展开更多
文摘定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.
文摘该文提出了一种工作于MPEG压缩域的快速视频目标分割算法。该算法以从MPEG1/2码流中部分解码提取的特征为输入,提取P帧中的运动目标。针对一般的压缩域算法目标边界精度不高的特点,算法采用I帧和P帧中每个块的直流DCT系数和3个交流DCT系数,以及运动补偿信息,重建出P帧的原图像1/16大小的子图像,采用快速平均移聚类得到具有较高边界精度的亮度一致的区域;针对运动向量的噪声容易造成错误检测的缺点,算法结合聚类分析结果和运动块的分布,采用基于马尔可夫随机场的统计标号方法对目标和背景区域进行分类,得到每个P帧的目标掩模。该算法可以得到4×4子块的边界精度,对于CIF格式的码流,在Pentium IV 2GHz平台上可以达到每秒40帧的处理速度。
文摘针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;在小波分解的每一尺度上定义相同的树结构MRF来表征医学图像特征信息间的联系。小波域树结构MRF模型包括层间小波系数四叉树结构和层内TS-MRF结构,层间小波系数结构具有一阶Markov性;层内TS-MRF模型,采用Potts模型对节点标号势函数建模,同标号的观测特征用高斯模型建模;最后,通过从低分辨率尺度到高分辨率尺度的递归运算、以及每一分辨率中从分类层次树的顶层向底层的递归来求解最大后验概率,实现医学图像分割。实验结果从视觉效果和定量分析两方面验证表明,文中算法能有效地提取图像的细节信息,比较完整地分割医学图像的目标区域,具有较高的分割精度和鲁棒性。
文摘研究一种基于小波域三重马尔科夫随机场模型(Markov Random Field,MRF)分割算法的遥感图像分割分析方案,对高分五号卫星提供的遥感图像信息进行MRF图元分割,在图元中使用两次小波域分析进行图像信息加强处理,其结果仍无法在高分卫星工具包中实现图像信息的有效读取,所以使用无人机超低空补充遥感的方式进行补充遥测,最终比较植被、水域、道路、建筑在高分卫星工具包下的识别率。革新方案的识别率远高于卫星直接图像的识别率,但对水域、道路的识别率仍较低,经过超低空补充遥感后,识别率达到99%以上,基于小波域三重MRF分割算法对遥感图像处理有积极意义。
文摘Deep reinforcement learning (deep RL) has the potential to replace classic robotic controllers. State-of-the-art Deep Reinforcement algorithms such as Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Reinforcement Algorithms, to mention a few, have been investigated for training robots to walk. However, conflicting performance results of these algorithms have been reported in the literature. In this work, we present the performance analysis of the above three state-of-the-art Deep Reinforcement algorithms for a constant velocity walking task on a quadruped. The performance is analyzed by simulating the walking task of a quadruped equipped with a range of sensors present on a physical quadruped robot. Simulations of the three algorithms across a range of sensor inputs and with domain randomization are performed. The strengths and weaknesses of each algorithm for the given task are discussed. We also identify a set of sensors that contribute to the best performance of each Deep Reinforcement algorithm.