针对UBGM(1,1)-Markov模型中存在2个邻近值可能被归属到不同状态,导致预测值产生偏差的问题,结合模糊分类理论,构建基于模糊分类的无偏灰色-马尔科夫模型(unbiased gray-Markov model based on fuzzy classification,FC-UBGM(1,1)-Mark...针对UBGM(1,1)-Markov模型中存在2个邻近值可能被归属到不同状态,导致预测值产生偏差的问题,结合模糊分类理论,构建基于模糊分类的无偏灰色-马尔科夫模型(unbiased gray-Markov model based on fuzzy classification,FC-UBGM(1,1)-Markov)。首先对UBGM(1,1)模型进行残差修正,然后将修正后拟合值的相对残差序列作为Markov链进行区间划分,再结合模糊分类的隶属度函数,计算相对残差的模糊向量,根据隶属度确定其所属的状态。实际算例表明,该模型比传统UBGM(1,1)-Markov模型的预测效果更好。展开更多
A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system a...A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.展开更多
文摘针对UBGM(1,1)-Markov模型中存在2个邻近值可能被归属到不同状态,导致预测值产生偏差的问题,结合模糊分类理论,构建基于模糊分类的无偏灰色-马尔科夫模型(unbiased gray-Markov model based on fuzzy classification,FC-UBGM(1,1)-Markov)。首先对UBGM(1,1)模型进行残差修正,然后将修正后拟合值的相对残差序列作为Markov链进行区间划分,再结合模糊分类的隶属度函数,计算相对残差的模糊向量,根据隶属度确定其所属的状态。实际算例表明,该模型比传统UBGM(1,1)-Markov模型的预测效果更好。
文摘A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.