期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
SEMI-BLIND CHANNEL ESTIMATION OF MULTIPLE-INPUT/MULTIPLE-OUTPUT SYSTEMS BASED ON MARKOV CHAIN MONTE CARLO METHODS 被引量:1
1
作者 JiangWei XiangHaige 《Journal of Electronics(China)》 2004年第3期184-190,共7页
This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t... This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness. 展开更多
关键词 Multiple-Input/Multiple-Output (MIMO) system Channel estimation Markov Chain Monte carlo (MCMC) method
下载PDF
Estimation of rate constants for polymerization based on Monte Carlo simulation
2
作者 罗正鸿 詹晓力 阳永荣 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期274-276,共3页
The application of Monte Carlo method in estimating rate constants for polymerization was described, A general program for Monte Carlo simulation was determined first according to the elementary reactions, after which... The application of Monte Carlo method in estimating rate constants for polymerization was described, A general program for Monte Carlo simulation was determined first according to the elementary reactions, after which the rate constants could be automatically adjusted and optimized through comparing of experimental and simulated data with an error expression that meeted a given minimum criterion. Such a process made the rate constants to be estimated without kinetic model in advance. The technique was applied to estimate the rate constants of the bulk polymerization of styrene catalyzed by the rare earth catalyst. The esthnated results showed the Monte Carlo method was feasible and effective for estimating rate constants in polymerization engineering. 展开更多
关键词 Monte carlo simulation rate constants estimation polymerization.
下载PDF
A Comparative Study of Amplitude and Timing Estimation in Experimental Particle Physics using Monte Carlo Simulation
3
作者 Hongda Xu Datao Gong Yun Chiu 《Journal of Modern Physics》 2013年第5期42-47,共6页
Optimal detection of liquid ionization calorimeter signal in experimental particle physics is considered. A few linear and nonlinear approaches for amplitude and arrival time estimation based on the χ2 function are c... Optimal detection of liquid ionization calorimeter signal in experimental particle physics is considered. A few linear and nonlinear approaches for amplitude and arrival time estimation based on the χ2 function are compared in simulation considering the noise sample correlation introduced by the analog pulse shaper. The estimation bias of the first-order approximation, a.k.a linear optimal filtering, is studied and contrasted to those of the second-order as well as the exhaustive search. A gradient-descent technique is presented as an alternative to the exhaustive search with significantly reduced search time and computation complexity. Results from various pulse shapers including the CR-RC2, CR-RC3, and CR2-RC2 are also compared. 展开更多
关键词 Liquid Ionization Calorimeter Detection OPTIMAL FILTERING AMPLITUDE and Timing estimation χ2 Function CRm-RCn pulse SHAPER Linear OPTIMAL FILTERING EXHAUSTIVE Search Gradient DESCENT Monte carlo
下载PDF
Joint state and parameter estimation in particle filtering and stochastic optimization 被引量:2
4
作者 Xiaojun YANG Keyi XING +1 位作者 Kunlin SHI Quan PAN 《控制理论与应用(英文版)》 EI 2008年第2期215-220,共6页
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approxi- ma... In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approxi- mation (SPSA) technique. The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework, and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function. The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systems. Simulation result demonstrates the feasibilitv and efficiency of the proposed algorithm 展开更多
关键词 Parameter estimation Particle filtering Sequential Monte carlo Simultaneous perturbation stochastic approximation Adaptive estimation
下载PDF
Record Values from the Inverse Weibull Lifetime Model: Different Methods of Estimation 被引量:1
5
作者 Khalaf S. Sultan 《Intelligent Information Management》 2010年第11期631-636,共6页
In this paper, we use the lower record values from the inverse Weibull distribution (IWD) to develop and discuss different methods of estimation in two different cases, 1) when the shape parameter is known and 2) when... In this paper, we use the lower record values from the inverse Weibull distribution (IWD) to develop and discuss different methods of estimation in two different cases, 1) when the shape parameter is known and 2) when both of the shape and scale parameters are unknown. First, we derive the best linear unbiased estimate (BLUE) of the scale parameter of the IWD. To compare the different methods of estimation, we present the results of Sultan (2007) for calculating the best linear unbiased estimates (BLUEs) of the location and scale parameters of IWD. Second, we derive the maximum likelihood estimates (MLEs) of the location and scale parameters. Further, we discuss some properties of the MLEs of the location and scale parameters. To compare the different estimates we calculate the relative efficiency between the obtained estimates. Finally, we propose some numerical illustrations by using Monte Carlo simulations and apply the findings of the paper to some simulated data. 展开更多
关键词 Scale PARAMETER Location PARAMETER Best Linear UNBIASED estimATES (BLUEs) Maximum LIKELIHOOD estimATES Relative Efficiency and MONTE carlo Simulations
下载PDF
Application of Bayesian Approach in the Parameter Estimation of Continuous Lumping Kinetic Model of Hydrocracking Process 被引量:1
6
作者 S. Sina Hosseini Boosari Neda Makouei Philip Stewart 《Advances in Chemical Engineering and Science》 2017年第3期257-269,共13页
Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this... Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model. 展开更多
关键词 HYDROCRACKING CONTINUOUS LUMPING KINETIC Model Bayesian Approach Parameter estimation MARKOV Chain MONTE carlo
下载PDF
DOA estimation of incoherently distributed sources using importance sampling maximum likelihood 被引量:1
7
作者 WU Tao DENG Zhenghong +2 位作者 HU Xiaoxiang LI Ao XU Jiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期845-855,共11页
In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description o... In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios. 展开更多
关键词 direction-of-arrival(DOA)estimation incoherently distributed(ID)sources importance sampling maximum likelihood(ISML) Monte carlo random calculation
下载PDF
Comparison of Parameter Estimation Methods for Transformer Weibull Lifetime Modelling 被引量:2
8
作者 ZHOU Dan LI Chengrong WANG Zhongdong 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1170-1177,共8页
关键词 电力变压器 寿命模型 电力技术 估计方法
下载PDF
Convergence Diagnostics for Gibbs Sampler via Maximum Likelihood Estimation
9
作者 程杞元 林秀光 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期212-215,共4页
A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered... A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered for the estimation of the parameters produced by the procedure. An example is provided to illustrate the procedure, and the numerical result is consistent with the theoretical one. 展开更多
关键词 Markov chain Monte carlo Gibbs sampler maximum likelihood estimation
下载PDF
Augmented input estimation in multiple maneuvering target tracking 被引量:1
10
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid BEHESHTI Mohammadtaghi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期841-851,共11页
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa... This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT. 展开更多
关键词 MULTI-TARGET tracking (MTT) MARKOV chain Monte-carlodata ASSOCIATION (MCMCDA) DATA ASSOCIATION (DA) augmentedinput estimation (AIE)
下载PDF
Particle filter for joint frequency offset and channel estimation in MIMO-OFDM systems
11
作者 张静 罗汉文 金荣洪 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期438-443,共6页
A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless com... A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations. 展开更多
关键词 multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) frequency offset channel estimation sequential Monte carlo particle filter
下载PDF
Estimations of Weibull-Geometric Distribution under Progressive Type II Censoring Samples
12
作者 Azhari A. Elhag Omar I. O. Ibrahim +1 位作者 Mohamed A. El-Sayed Gamal A. Abd-Elmougod 《Open Journal of Statistics》 2015年第7期721-729,共9页
This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown p... This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation 展开更多
关键词 Weibull-Geometric Distribution Progressive Type II CENSORING SAMPLES Bayesian estimation Maximum LIKELIHOOD estimation Bootstrap CONFIDENCE INTERVALS Markov Chain Monte carlo
下载PDF
PARAMETER ESTIMATION OF MULTI-CONSTITUENT WATER QUALITY MODEL FOR THE LIANGXI RIVER BY MARQUARDT METHOD
13
作者 Liu Shuxia(Institute of Geography, CAS, Beijing 100101People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z1期110-118,共9页
A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Mar... A multi-constituent water quality model is presented,Which relates carbonaceous biochemical oxygen demand (CBOD),amonia (NH3-N), nitrite(NO2-N), nitrate(NO3-N) and dissolvedoxygen(DO). The parameters are solved by Marquardt Method (i. e.,Dampled Least Square Method) while initial values inoptimization are produced by Monte-Carlo Method. The Potential ofthe method as a parameter estimation aid is demonstrated for theapplication to the Liangyi Rver, JiangSu Province of China and by aspecial comparison with Gauss Method. 展开更多
关键词 nitrogen pollution water quality model parameter estimation Marquardt Method Monte-carlo Method
下载PDF
Effective Bandwidth Estimation in Data Networks: An Analysis for Two Traffic Characterizations
14
作者 José Bavio Carina Fernández Beatriz Marrón 《Electrical Science & Engineering》 2021年第1期23-29,共7页
The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the chan... The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one. 展开更多
关键词 Effective bandwidth Markov fluid model Kernel estimation Data networking Monte carlo Markov Chain algorithms
下载PDF
Technique for Estimating the Cone Bearing Smoothing Parameters
15
作者 Erick Baziw 《International Journal of Geosciences》 2023年第7期603-618,共16页
Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recordi... Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation. 展开更多
关键词 Cone Penetration Testing (CPT) Geotechnical Site Characterization Optimal estimation Iterative Forward Modelling (IFM) Monte carlo Techniques Calibration
下载PDF
计及随机变量相关性的多点线性化概率潮流计算 被引量:1
16
作者 叶希 王彦沣 +3 位作者 黄杨 廖帮昆 欧阳雪彤 文云峰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第1期37-45,共9页
为满足考虑源荷双侧强不确定性场景的“双高”电力系统潮流分析计算需求,提出一种新型的概率潮流计算方法。基于核密度估计建立输入随机变量的概率分布模型,构建Copula函数刻画多维随机输入变量间的相关性,获取更加符合系统实际运行情... 为满足考虑源荷双侧强不确定性场景的“双高”电力系统潮流分析计算需求,提出一种新型的概率潮流计算方法。基于核密度估计建立输入随机变量的概率分布模型,构建Copula函数刻画多维随机输入变量间的相关性,获取更加符合系统实际运行情况的样本数据。引入多点线性化潮流计算方法,在降低非线性潮流计算量的同时减小单点线性化潮流计算的截断误差。在IEEE-30节点系统上进行算例测试,验证所提方法的准确性和有效性。 展开更多
关键词 蒙特卡洛模拟 概率潮流 核密度估计 多点线性化 COPULA理论 新能源
下载PDF
基于模拟法矿区贯通误差预计的可视化研究 被引量:1
17
作者 胡荣明 庞兆峻 +2 位作者 竞霞 杨彦臻 魏青博 《煤炭技术》 CAS 2024年第3期86-90,共5页
矿山测量中的贯通误差预计工作,是利用最小二乘准则与误差传播律进行误差最大限度估算,常绘制二维平面图对贯通误差的累积过程进行表达。为探讨矿区贯通误差预计工作的新方式,尝试在模拟法贯通误差预计的基础上,通过Web三维引擎进行贯... 矿山测量中的贯通误差预计工作,是利用最小二乘准则与误差传播律进行误差最大限度估算,常绘制二维平面图对贯通误差的累积过程进行表达。为探讨矿区贯通误差预计工作的新方式,尝试在模拟法贯通误差预计的基础上,通过Web三维引擎进行贯通误差预计图的三维可视化表达。利用3D绘图协议WebGL、JavaScript以及HTML设计建模,综合实现设计坐标的随机值模拟、点位与相对误差椭圆生成、三维巷道及设计导线生成等工作,同时利用three.js库将设计信息融合进而实现人机交互。在三交一号矿井贯通工程中,针对此模型进行了可行性分析并结合Spring框架开发应用系统,结果表明:目标贯通处的误差预计大小为99.8 mm,满足贯通允许偏差,且符合并能反映出误差累积的规律和大小,通过进一步的场景渲染与系统的前后端设计,可为矿区贯通误差预计工作的开展提供Web三维服务。 展开更多
关键词 贯通误差预计 蒙特卡洛模拟法 三维可视化 矿井巷道 WEB应用
下载PDF
一种基于蒙特卡洛方法的配电网概率可靠性快速计算方法 被引量:1
18
作者 刘自发 李颉雨 于普洋 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第2期9-19,共11页
配电网的概率可靠性能够弥补传统可靠性指标的期望值仅从均值角度衡量系统可靠性的不足,但随着配电网规模扩大以及数据量的剧增,能够同时兼顾计算准确性与计算速度的概率可靠性计算方法是亟待研究的。为此,提出一种基于蒙特卡洛方法的... 配电网的概率可靠性能够弥补传统可靠性指标的期望值仅从均值角度衡量系统可靠性的不足,但随着配电网规模扩大以及数据量的剧增,能够同时兼顾计算准确性与计算速度的概率可靠性计算方法是亟待研究的。为此,提出一种基于蒙特卡洛方法的配电网概率可靠性快速计算方法,利用改进三点估计法以及三阶多项式正态变换,在保留输入变量相关性的同时有效缩减输入样本点规模,并采用级数展开得到概率可靠性。首先采用改进三点估计法,在独立标准正态空间内选取样本点,再通过三阶多项式正态变换将其转换为原始变量空间的样本点;接着采用序贯蒙特卡洛方法,在考虑孤岛划分的情况下对样本点进行可靠性计算;最后通过Edgeworth级数展开,得到可靠性指标的概率分布。对改进的IEEE-RBTS Bus6的F4馈线进行算例分析,结果表明:该文所提方法与传统蒙特卡洛方法的配电网系统可靠性计算结果之间仅存在2.195%的最大偏差,而该文所提方法计算时间仅为传统蒙特卡洛方法的1.05%,证明该文所提方法在保证较高精度的同时可以显著提升计算速度。 展开更多
关键词 含源配电网 可靠性 蒙特卡洛方法 点估计法 级数展开
下载PDF
苏北盆地建湖隆起沉积盆地型干热岩资源潜力评价
19
作者 段忠丰 李福来 +2 位作者 杨永红 于翔 王凯宁 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期46-54,共9页
对苏北盆地建湖隆起的干热岩资源潜力进行评价,展示华东地区沉积盆地型干热岩资源的勘探前景。基于野外勘察、室内实验和数值模拟等多手段地质分析方法分析研究区干热岩地热地质条件,以4个区域地震地质剖面为基础,建立二维热传导数值模... 对苏北盆地建湖隆起的干热岩资源潜力进行评价,展示华东地区沉积盆地型干热岩资源的勘探前景。基于野外勘察、室内实验和数值模拟等多手段地质分析方法分析研究区干热岩地热地质条件,以4个区域地震地质剖面为基础,建立二维热传导数值模型,模拟分析深部地温分布,确定评价深度。应用基于体积法的蒙特卡罗模拟给出合理的资源量评价分析。该方法可充分考虑参数估计的不确定性。结果表明,建湖隆起3~10 km深度内干热岩资源的可采热资源量约为44.6亿t标煤,发电潜力为692 769.9 MWe,约为江苏省2022年全年用电量的49倍。 展开更多
关键词 干热岩 潜力评价 建湖隆起 热传导模拟 蒙特卡洛模拟
下载PDF
曲轴综合测量机几何误差建模及敏感性分析
20
作者 王亚晓 杨科科 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期295-302,共8页
为提高曲轴综合测量机测量精度,针对其几何误差元素多,逐一进行补偿工作量大、过程繁琐等问题,基于多体系统理论和齐次坐标变换建立曲轴综合测量机的几何误差模型,采用Sobol敏感性分析方法进行分析,识别出对测量精度影响较大的关键几何... 为提高曲轴综合测量机测量精度,针对其几何误差元素多,逐一进行补偿工作量大、过程繁琐等问题,基于多体系统理论和齐次坐标变换建立曲轴综合测量机的几何误差模型,采用Sobol敏感性分析方法进行分析,识别出对测量精度影响较大的关键几何误差项。通过对曲轴综合测量机随动测板不同位置处的误差元素敏感性系数进行分析计算,从21项几何误差中识别出10项对曲轴综合测量机测量精度影响较大的关键项,为合理经济地提高曲轴综合测量机测量精度提供依据。 展开更多
关键词 曲轴综合测量机 多体系统理论 Sobol敏感性分析 蒙特卡洛估算 关键几何误差
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部