污水处理过程具有大时滞、非线性、多扰动等特点,运行过程中存在生化需氧量(Biochemical Oxygen Demand,BOD)等重要水质参数难以实时测量问题,软测量技术为解决该问题提供了有效方法。对此,文章提出基于人工蜂群算法的支持向量回归(Supp...污水处理过程具有大时滞、非线性、多扰动等特点,运行过程中存在生化需氧量(Biochemical Oxygen Demand,BOD)等重要水质参数难以实时测量问题,软测量技术为解决该问题提供了有效方法。对此,文章提出基于人工蜂群算法的支持向量回归(Support Vector Regression,SVR)建模方法。该方法利用蜂群算法对支持向量机的参数gamma和C进行寻优,找到使均方误差最小的超参数组合,以提高模型预测精度。同时,利用加州大学欧文分校(University of California Irvine,UCI)数据库中的污水生产数据验证该方法的有效性,结果表明该方法的实际应用效果好,可为工业生产中难以测量变量的监测提供技术支持。展开更多
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐...针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。展开更多
文摘污水处理过程具有大时滞、非线性、多扰动等特点,运行过程中存在生化需氧量(Biochemical Oxygen Demand,BOD)等重要水质参数难以实时测量问题,软测量技术为解决该问题提供了有效方法。对此,文章提出基于人工蜂群算法的支持向量回归(Support Vector Regression,SVR)建模方法。该方法利用蜂群算法对支持向量机的参数gamma和C进行寻优,找到使均方误差最小的超参数组合,以提高模型预测精度。同时,利用加州大学欧文分校(University of California Irvine,UCI)数据库中的污水生产数据验证该方法的有效性,结果表明该方法的实际应用效果好,可为工业生产中难以测量变量的监测提供技术支持。
文摘针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。