This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A ...This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A linear adaptive event-triggered threshold is established by virtue of 1-norm inequality.Under such a triggering strategy, the original system can be transformed into an interval uncertain system. By using a stochastic copositive Lyapunov function, an asynchronous fault detection filter is designed for positive Markovian jump systems(PMJSs) in terms of linear programming. The presented filter satisfies both L_-gain(?_-gain) fault sensitivity and L_1(?_1)internal differential privacy sensitivity. The proposed approach is also extended to the discrete-time case. Finally, two examples are provided to illustrate the effectiveness of the proposed design.展开更多
This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stabi...This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.展开更多
This paper investigates the sliding mode control(SMC) problem for a class of discrete-time nonlinear networked Markovian jump systems(MJSs) in the presence of probabilistic denial-of-service(Do S) attacks. The communi...This paper investigates the sliding mode control(SMC) problem for a class of discrete-time nonlinear networked Markovian jump systems(MJSs) in the presence of probabilistic denial-of-service(Do S) attacks. The communication network via which the data is propagated is unsafe and the malicious adversary can attack the system during state feedback. By considering random Denial-of-Service attacks, a new sliding mode variable is designed, which takes into account the distribution information of the probabilistic attacks. Then, by resorting to Lyapunov theory and stochastic analysis methods, sufficient conditions are established for the existence of the desired sliding mode controller, guaranteeing both reachability of the designed sliding surface and stability of the resulting sliding motion.Finally, a simulation example is given to demonstrate the effectiveness of the proposed sliding mode control algorithm.展开更多
Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to gu...Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems. Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.展开更多
This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual g...This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
The descriptor Markovian jump systems( DMJSs)with partially unknown transition probabilities( PUTPs) are studied by means of variable structure control. First,by virtue of the strictly linear matrix inequality( LMI) t...The descriptor Markovian jump systems( DMJSs)with partially unknown transition probabilities( PUTPs) are studied by means of variable structure control. First,by virtue of the strictly linear matrix inequality( LMI) technique,a sufficient condition is presented, under which the DMJSs subject to PUTPs are stochastically admissible. Secondly,a novel sliding surface function based on the system state and input is constructed for DMJSs subject to PUTPs; and a dynamic sliding mode controller is synthesized, which guarantees that state trajectories will reach the pre-specified sliding surface in finite time despite uncertainties and disturbances. The results indicate that by checking the feasibility of a series of LMIs,the stochastic admissibility of the overall closed loop system is determined. Finally,the validity of the theoretical results is illustrated with the example of the direct-current motor. Furthermore,compared with the existing literature,the state convergence rate,buffeting reduction and overshoot reduction are obviously optimized.展开更多
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, ...This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, impulse free and stochastically stable. Based on the condition, a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular, impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed methods.展开更多
We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite...We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional(LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities(LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
The design of robust H-infinity controller for uncertain discrete-time Markovianjump systems with actuator saturation is addressed in this paper. The parameter uncertainties are assumed to be norm-bounded. Linear matr...The design of robust H-infinity controller for uncertain discrete-time Markovianjump systems with actuator saturation is addressed in this paper. The parameter uncertainties are assumed to be norm-bounded. Linear matrix inequality (LMI) conditions are proposed to design a set of controllers in order to satisfy the closed-loop local stability and closed-loop H-infinity performance. Using an LMI approach, a set of state feedback gains is constructed such that the set of admissible initial conditions is enlarged and formulated through solving an optimization problem. A numerical example is given to illustrate the effectiveness of the proposed methods.展开更多
This paper considers the issue of H_(∞)dynamic output feedback controller design for T-S fuzzy Markovian jump systems under time-varying sampling with known upper bound on the sampling intervals.The main aim is to re...This paper considers the issue of H_(∞)dynamic output feedback controller design for T-S fuzzy Markovian jump systems under time-varying sampling with known upper bound on the sampling intervals.The main aim is to realize sampled-data fuzzy dynamic output feedback control so as to demonstrate the stochastic stability and H_(∞)performance index of the closed-loop sampled-data fuzzy Markovian jump systems.Then,by making the most of the information within the sampling interval,a suitable closed-loop function is constructed and the integral terms are handled by using free weighted matrix method and improved integral inequality technique.Numerical example and single-link robot arm are presented to show the effectiveness of the developed method.展开更多
This study investigates the problem of robust mode-dependent control for a class of discrete-time singular Markovian jump systems with time-varying delay.Using the Lyapunov functional method and delay decomposition ap...This study investigates the problem of robust mode-dependent control for a class of discrete-time singular Markovian jump systems with time-varying delay.Using the Lyapunov functional method and delay decomposition approach,Linear matrix inequality(LMI)-based sufficient conditions for the stochastic stability and robust modedependent control are developed,which guarantee the considered systems to be regular,causal and stochastically stabilisable.Finally,numerical examples are presented to demonstrate the effectiveness and advantages of the theoretical results.展开更多
The paper analyzes finite-time H_(∞)sampled-data reliability control for nonlinear continuous time Markovian jump systems with randomly occurring uncertainty on account of T-S fuzzy model.In particular,the transition...The paper analyzes finite-time H_(∞)sampled-data reliability control for nonlinear continuous time Markovian jump systems with randomly occurring uncertainty on account of T-S fuzzy model.In particular,the transition rates of the Markovian jump systems have both the upper bound and lower bound.Meanwhile,a new Lyapunov-Krasovskii functional(LKF)is considered,which fully captures the available characteristics of real sampling period,and a sampled-data controller with nonlinear actuator failures is designed.Based on the integral inequality technique,some less conservative conditions are proposed such that the stochastic fuzzy system is reliable in the sense,which satisfies finite-time bounded and certain H_(∞)performance levelγ.Additionally,some numerical examples can illustrate the effectiveness of the results.展开更多
This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Ma...This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.展开更多
This paper deals with delay-dependent stochastic stability and bounded real lemma (BRL) for Markovian jump linear systems with interval time-varying delays. By constructing some new Lyapunov functionals and using th...This paper deals with delay-dependent stochastic stability and bounded real lemma (BRL) for Markovian jump linear systems with interval time-varying delays. By constructing some new Lyapunov functionals and using the Jensen's integral inequality method, the free weighting matrix method, the convex combination method and the delay decomposition approach integratedly, some less conservative delay-dependent stability criteria and BRL are established. Numerical examples are given to show the effectiveness of the proposed method.展开更多
The output regulation control problem for the Markovian jump systems with colored-noise is proposed in this paper.Since the modes mismatch problem often exists in the Markovian switching system,the authors design a mo...The output regulation control problem for the Markovian jump systems with colored-noise is proposed in this paper.Since the modes mismatch problem often exists in the Markovian switching system,the authors design a modes asynchronous controller with an internal model form,which can not only deal with external disturbance,but also reduce the influence of stochastic noise on the system,such that the mean square of the regulation error can be made arbitrarily small by turning the designed parameters.Meanwhile,a criterion of the m-th moment noise-to-state exponential stability is presented for continuous-time Markovian jump systems under the asynchronous control.展开更多
The paper is concerned with positive observer design for positive Markovian jump systems with partly known transition rates. By applying a linear co-positive type Lyapunov-Krasovskii function,a sufficient condition is...The paper is concerned with positive observer design for positive Markovian jump systems with partly known transition rates. By applying a linear co-positive type Lyapunov-Krasovskii function,a sufficient condition is proposed to ensure the stochastic stability of the error positive system and the existence of the positive observer, which is computed in linear programming. Finally, an example is given to demonstrate the validity of the main results.展开更多
ABSTRACTThis paper addresses the problems of stability and stabilisation of Markovian jump systems(MJSs) with fast switching. First, a novel model by applying an averaging approach to the fastswitching is proposed. Th...ABSTRACTThis paper addresses the problems of stability and stabilisation of Markovian jump systems(MJSs) with fast switching. First, a novel model by applying an averaging approach to the fastswitching is proposed. Then, a new method for constructing an auxiliary system is given to makethe stability analysis. It is proved that the stability of the originally fast switching MJS couldbe guaranteed by an MJS with an average switching, if the fast switching achieves its averageapproximation sufficiently fast. Based on the proposed results, some extensions about generally stabilising controllers are considered, where the fault-tolerant situation is involved too.All the conditions are presented in terms of LMIs. Finally, two numerical examples are used todemonstrate the effectiveness and superiority of the method.展开更多
This study researches the H_(∞) control issue for a networked Markovian jump system with data packet loss occurring not only in the channel from sensor to controller but also in the channel from controller to actuato...This study researches the H_(∞) control issue for a networked Markovian jump system with data packet loss occurring not only in the channel from sensor to controller but also in the channel from controller to actuator via an observer.The mathematical model for the closed‐loop networked Markovian jump system with data packet loss is established.The necessary and sufficient conditions for the closed‐loop system to be stochastically stable are derived.The design approach of the controller and the minimal performance index of the external disturbance suppression are also given in the case that the transition possi-bilities of the system modes and the data packet loss are both partially unavailable.Finally,two numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (62073111,62073167)the Natural Science Foundation of Hainan Province (621QN212)Science Research Funding of Hainan University (KYQD(ZR)22180)。
文摘This paper is concerned with the double sensitive fault detection filter for positive Markovian jump systems. A new hybrid adaptive event-triggered mechanism is proposed by introducing a non-monotonic adaptive law. A linear adaptive event-triggered threshold is established by virtue of 1-norm inequality.Under such a triggering strategy, the original system can be transformed into an interval uncertain system. By using a stochastic copositive Lyapunov function, an asynchronous fault detection filter is designed for positive Markovian jump systems(PMJSs) in terms of linear programming. The presented filter satisfies both L_-gain(?_-gain) fault sensitivity and L_1(?_1)internal differential privacy sensitivity. The proposed approach is also extended to the discrete-time case. Finally, two examples are provided to illustrate the effectiveness of the proposed design.
文摘This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.
基金supported in part by the National Natural Science Foundation of China(61773209)the Six Talent Peaks Project in Jiangsu Province(XYDXX-033)+1 种基金the Postdoctoral Science Foundation of China(2014M551598)the Natural Science Foundation of Jiangsu Province(BK20190021)。
文摘This paper investigates the sliding mode control(SMC) problem for a class of discrete-time nonlinear networked Markovian jump systems(MJSs) in the presence of probabilistic denial-of-service(Do S) attacks. The communication network via which the data is propagated is unsafe and the malicious adversary can attack the system during state feedback. By considering random Denial-of-Service attacks, a new sliding mode variable is designed, which takes into account the distribution information of the probabilistic attacks. Then, by resorting to Lyapunov theory and stochastic analysis methods, sufficient conditions are established for the existence of the desired sliding mode controller, guaranteeing both reachability of the designed sliding surface and stability of the resulting sliding motion.Finally, a simulation example is given to demonstrate the effectiveness of the proposed sliding mode control algorithm.
文摘Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated. The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems. Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.
基金the National Natural Science Foundation of China (No.60504008).
文摘This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
基金The National Natural Science Foundation of China(No.61573199)
文摘The descriptor Markovian jump systems( DMJSs)with partially unknown transition probabilities( PUTPs) are studied by means of variable structure control. First,by virtue of the strictly linear matrix inequality( LMI) technique,a sufficient condition is presented, under which the DMJSs subject to PUTPs are stochastically admissible. Secondly,a novel sliding surface function based on the system state and input is constructed for DMJSs subject to PUTPs; and a dynamic sliding mode controller is synthesized, which guarantees that state trajectories will reach the pre-specified sliding surface in finite time despite uncertainties and disturbances. The results indicate that by checking the feasibility of a series of LMIs,the stochastic admissibility of the overall closed loop system is determined. Finally,the validity of the theoretical results is illustrated with the example of the direct-current motor. Furthermore,compared with the existing literature,the state convergence rate,buffeting reduction and overshoot reduction are obviously optimized.
基金supported by the National Creative Research Groups Science Foundation of China (No.60721062)the National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)the National Natural Science Foundation of China (No.60736021)
文摘This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, impulse free and stochastically stable. Based on the condition, a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular, impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed methods.
基金Project supported by Department of Science and Technology(DST)under research project No.SR/FTP/MS-039/2011
文摘We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional(LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities(LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
基金supported by the National Creative Research Groups Science Foundation of China (No. 60721062)the National High Technology Research and Development Program of China (863Program) (No. 2006AA04 Z182)the National Natural Science Foundation of China (No.60736021)
文摘The design of robust H-infinity controller for uncertain discrete-time Markovianjump systems with actuator saturation is addressed in this paper. The parameter uncertainties are assumed to be norm-bounded. Linear matrix inequality (LMI) conditions are proposed to design a set of controllers in order to satisfy the closed-loop local stability and closed-loop H-infinity performance. Using an LMI approach, a set of state feedback gains is constructed such that the set of admissible initial conditions is enlarged and formulated through solving an optimization problem. A numerical example is given to illustrate the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.62173174,61773191,62003154,61973148Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant No.2019KJI010+1 种基金the Natural Science Foundation of Shandong Province for Key Projects under Grant No.ZR2020KA010Graduate Education High-Quality Curriculum Construction Project for Shandong Province under Grant No.SDYKC20185.
文摘This paper considers the issue of H_(∞)dynamic output feedback controller design for T-S fuzzy Markovian jump systems under time-varying sampling with known upper bound on the sampling intervals.The main aim is to realize sampled-data fuzzy dynamic output feedback control so as to demonstrate the stochastic stability and H_(∞)performance index of the closed-loop sampled-data fuzzy Markovian jump systems.Then,by making the most of the information within the sampling interval,a suitable closed-loop function is constructed and the integral terms are handled by using free weighted matrix method and improved integral inequality technique.Numerical example and single-link robot arm are presented to show the effectiveness of the developed method.
基金the Sichuan Science and Technology Plan[grant number 2017GZ0165].
文摘This study investigates the problem of robust mode-dependent control for a class of discrete-time singular Markovian jump systems with time-varying delay.Using the Lyapunov functional method and delay decomposition approach,Linear matrix inequality(LMI)-based sufficient conditions for the stochastic stability and robust modedependent control are developed,which guarantee the considered systems to be regular,causal and stochastically stabilisable.Finally,numerical examples are presented to demonstrate the effectiveness and advantages of the theoretical results.
基金supported by the National Natural Science Foundation of China under Grant No.61273004the Natural Science Foundation of Hebei Province No.F2018203099。
文摘The paper analyzes finite-time H_(∞)sampled-data reliability control for nonlinear continuous time Markovian jump systems with randomly occurring uncertainty on account of T-S fuzzy model.In particular,the transition rates of the Markovian jump systems have both the upper bound and lower bound.Meanwhile,a new Lyapunov-Krasovskii functional(LKF)is considered,which fully captures the available characteristics of real sampling period,and a sampled-data controller with nonlinear actuator failures is designed.Based on the integral inequality technique,some less conservative conditions are proposed such that the stochastic fuzzy system is reliable in the sense,which satisfies finite-time bounded and certain H_(∞)performance levelγ.Additionally,some numerical examples can illustrate the effectiveness of the results.
文摘This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.61174140)
文摘This paper deals with delay-dependent stochastic stability and bounded real lemma (BRL) for Markovian jump linear systems with interval time-varying delays. By constructing some new Lyapunov functionals and using the Jensen's integral inequality method, the free weighting matrix method, the convex combination method and the delay decomposition approach integratedly, some less conservative delay-dependent stability criteria and BRL are established. Numerical examples are given to show the effectiveness of the proposed method.
基金This work was partially supported by the National Natural Science Foundation of China under Grant No.U1966202.
文摘The output regulation control problem for the Markovian jump systems with colored-noise is proposed in this paper.Since the modes mismatch problem often exists in the Markovian switching system,the authors design a modes asynchronous controller with an internal model form,which can not only deal with external disturbance,but also reduce the influence of stochastic noise on the system,such that the mean square of the regulation error can be made arbitrarily small by turning the designed parameters.Meanwhile,a criterion of the m-th moment noise-to-state exponential stability is presented for continuous-time Markovian jump systems under the asynchronous control.
基金supported by the Key Program of National Natural Science Foundation of China under Grant Nos.61573088 and 61433004
文摘The paper is concerned with positive observer design for positive Markovian jump systems with partly known transition rates. By applying a linear co-positive type Lyapunov-Krasovskii function,a sufficient condition is proposed to ensure the stochastic stability of the error positive system and the existence of the positive observer, which is computed in linear programming. Finally, an example is given to demonstrate the validity of the main results.
基金supported by the Open Project of Key Field Alliance of Liaoning Province[grant number 2022-KF-11-03].
文摘ABSTRACTThis paper addresses the problems of stability and stabilisation of Markovian jump systems(MJSs) with fast switching. First, a novel model by applying an averaging approach to the fastswitching is proposed. Then, a new method for constructing an auxiliary system is given to makethe stability analysis. It is proved that the stability of the originally fast switching MJS couldbe guaranteed by an MJS with an average switching, if the fast switching achieves its averageapproximation sufficiently fast. Based on the proposed results, some extensions about generally stabilising controllers are considered, where the fault-tolerant situation is involved too.All the conditions are presented in terms of LMIs. Finally, two numerical examples are used todemonstrate the effectiveness and superiority of the method.
基金National Natural Science Foundation of China,Grant Numbers:11705122,61573137Zhejiang Public Welfare Technology Research Project,Grant Number:LGG19F030004+3 种基金Huzhou Public Welfare Application Research Project,Grant Number:2019GZ02General Research Project of Zhejiang Provincial Department of Education,Grant Number:Y202044896Sichuan Science and Technology Program of China,Grant Number:2020YFH0124Zigong Key Science and Technology Project of China,Grant Number:2020YGJC01。
文摘This study researches the H_(∞) control issue for a networked Markovian jump system with data packet loss occurring not only in the channel from sensor to controller but also in the channel from controller to actuator via an observer.The mathematical model for the closed‐loop networked Markovian jump system with data packet loss is established.The necessary and sufficient conditions for the closed‐loop system to be stochastically stable are derived.The design approach of the controller and the minimal performance index of the external disturbance suppression are also given in the case that the transition possi-bilities of the system modes and the data packet loss are both partially unavailable.Finally,two numerical examples are used to illustrate the effectiveness of the proposed method.