期刊文献+
共找到7,041篇文章
< 1 2 250 >
每页显示 20 50 100
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
1
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Optimizing bone marrow harvesting sites for enhanced mesenchymal stem cell yield and efficacy in knee osteoarthritis treatment
2
作者 Arulkumar Nallakumarasamy Sandeep Shrivastava +4 位作者 Ravi Velamoor Rangarajan Naveen Jeyaraman Avinash Gandi Devadas Swaminathan Ramasubramanian Madhan Jeyaraman 《World Journal of Methodology》 2025年第2期92-107,共16页
Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,ha... Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,has garnered attention for cartilage repair in OA.While the iliac crest is the traditional site for bone marrow harvesting(BMH),associated morbidity has prompted the exploration of alternative sites such as the proximal tibia,distal femur,and proximal humerus.This paper reviews the impact of different harvesting sites on mesenchymal stem cell(MSC)yield,viability,and regenerative potential,emphasizing their relevance in knee OA treatment.The iliac crest consistently offers the highest MSC yield,but alternative sites within the surgical field of knee procedures offer comparable MSC characteristics with reduced morbidity.The integration of harvesting techniques into existing knee surgeries,such as total knee arthroplasty,provides a less invasive approach while maintaining thera-peutic efficacy.However,variability in MSC yield from these alternative sites underscores the need for further research to standardize techniques and optimize clinical outcomes.Future directions include large-scale comparative studies,advanced characterization of MSCs,and the development of personalized harvesting strategies.Ultimately,the findings suggest that optimizing the site of BMH can significantly influence the quality of MSC-based therapies for knee OA,enhancing their clinical utility and patient outcomes. 展开更多
关键词 KNEE OSTEOARTHRITIS mesenchymal stem cells Bone marrow harvest Regenerative medicine
下载PDF
Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction 被引量:11
3
作者 WANG Jian-an LUO Rong-hua +5 位作者 ZHANG Xing XIE Xiao-jie HU Xin-yang HE Ai-na CHEN Jie LI Jia-hui 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第8期641-647,共7页
Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme i... Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme inhibitors (ACEIs) perindopril into ischemic myocardium after acute myocardial infarction. Methods: Forty rats were divided into four groups: control, MSC, ACEI, MSC+ACEI groups. Bone marrow stem cell derived rat was injected immediately into a zone made ischemic by coronary artery ligation in MSC group and MSC+ACEI group. Phosphate-buffered saline (PBS) was injected into control group. Perindopril was administered p.o. to ACEI group and MSC+ACEI group. Six weeks after implantation, the rats were killed and heart sample was collected. Fibrillar collagen was observed by meliorative Masson’s trichome stain. Western Blotting was employed to evaluate the protein expression of matrix metalloproteinase (MMP)-2, matrix metalloproteinase (MMP)-9 in infarction zone. The transcriptional level of MMP2, MMP9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in infarction area was detected by reverse transcriptase PCR (RT-PCR) analysis. Results: The fibrillar collagen area, the protein expression of MMP2, MMP9 and the transcriptional level of MMP2, MMP9 mRNA in infarction zone reduced in MSC group, ACEI group, and MSC+ACEI group. No significant difference was detected in the expression of TIMP1 mRNA among the 4 groups. Conclusion: Both MSC and ACEI could reduce infarction remodelling by altering collagen metabolism. 展开更多
关键词 REMODELLING Acute myocardial infarction PERINDOPRIL Bone marrow mesenchymal stem cell
下载PDF
Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model 被引量:2
4
作者 Rida-e-Maria Qazi Irfan Khan +5 位作者 Kanwal Haneef Tuba Shakil Malick Nadia Naeem Waqas Ahmad Asmat Salim Sadia Mohsin 《World Journal of Stem Cells》 SCIE 2022年第8期633-657,共25页
BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide.Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tis... BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide.Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tissue.Cardiac tissue engineering using biomaterial scaffolds combined with stem cells and bioactive molecules could be a highly promising approach for cardiac repair.Use of biomaterials can provide suitable microenvironment to the cells and can solve cell engraftment problems associated with cell transplantation alone.Mesenchymal stem cells(MSCs)are potential candidates in cardiac tissue engineering because of their multilineage differentiation potential and ease of isolation.Use of DNA methyl transferase inhibitor,such as zebularine,in combination with three-dimensional(3D)scaffold can promote efficient MSC differentiation into cardiac lineage,as epigenetic modifications play a fundamental role in determining cell fate and lineage specific gene expression.AIM To investigate the role of collagen scaffold and zebularine in the differentiation of rat bone marrow(BM)-MSCs and their subsequent in vivo effects.METHODS MSCs were isolated from rat BM and characterized morphologically,immunophenotypically and by multilineage differentiation potential.MSCs were seeded in collagen scaffold and treated with 3μmol/L zebularine in three different ways.Cytotoxicity analysis was done and cardiac differentiation was analyzed at the gene and protein levels.Treated and untreated MSC-seeded scaffolds were transplanted in the rat myocardial infarction(MI)model and cardiac function was assessed by echocardiography.Cell tracking was performed by DiI dye labeling,while regeneration and neovascularization were evaluated by histological and immunohistochemical analysis,respectively.RESULTS MSCs were successfully isolated and seeded in collagen scaffold.Cytotoxicity analysis revealed that zebularine was not cytotoxic in any of the treatment groups.Cardiac differentiation analysis showed more pronounced results in the type 3 treatment group which was subsequently chosen for the transplantation in the in vivo MI model.Significant improvement in cardiac function was observed in the zebularine treated MSC-seeded scaffold group as compared to the MI control.Histological analysis also showed reduction in fibrotic scar,improvement in left ventricular wall thickness and preservation of ventricular remodeling in the zebularine treated MSC-seeded scaffold group.Immunohistochemical analysis revealed significant expression of cardiac proteins in DiI labeled transplanted cells and a significant increase in the number of blood vessels in the zebularine treated MSC-seeded collagen scaffold transplanted group.CONCLUSION Combination of 3D collagen scaffold and zebularine treatment enhances cardiac differentiation potential of MSCs,improves cell engraftment at the infarcted region,reduces infarct size and improves cardiac function. 展开更多
关键词 mesenchymal stem cells myocardial infarction Cardiac tissue engineering Demethylating agent Collagen scaffold ZEBULARINE
下载PDF
Magnetic resonance evaluation of transplanted mesenchymal stem cells after myocardial infarction in swine 被引量:7
5
作者 KE Yang~1,PENG Chao-quan~1,XIANG Peng~1,ZHANG Cheng-xi~1, ZOU Li-yuan~1,WU Xiao~1,YA Gao~1,KANG Z huang~2,HE Ke-ke~2,LIU Jin-lai~1 (1.Department of Cardiology,The Third Affiliated Hospital, Sun Yat-sen University,Guangzhou 2.Department of Radiology, the Third Affiliated Hospital,Sun Yat-sen University, Guangzhou 5100630 3.Center for Stem Cell Biology and Tissue Engineering,Sun Yat-sen University,Guangzhou 5100120) 《岭南心血管病杂志》 2011年第S1期226-226,共1页
Objectives To trace and evaluate intracoronary transplanted mesenchymal stem cells(MSCs) labeled with superparamagnetic iron oxide(SPIO) by using magnetic resonance imaging(MRI) in a swine model of myocardial infarcti... Objectives To trace and evaluate intracoronary transplanted mesenchymal stem cells(MSCs) labeled with superparamagnetic iron oxide(SPIO) by using magnetic resonance imaging(MRI) in a swine model of myocardial infarction (MI).Methods MSCs were transfected with a lentiviral vector carrying the gene encoding green fluorescent protein (GFP) and labeled in vitro with SPIO.Two weeks after MI, swine were randomized to intracoronary transplantation of dual -labeled MSCs(n = 10),MSCs-GFP(n = 10) and saline(n = 5).MRI examination was performed with a 1.5T clinical scanner at 24 hours,3 weeks and 8 weeks after cells transplantation. Signal intensity(SI) changes,cardiac function and MI size were measured using MRI.Correlation between MR findings and histomorphologic findings was also investigated. Results The labeling efficiency at a combination of 25μg Fe/ml SPIO and 0.8 pi/ml Lipofectamine 2000 reached 100%.SPIO labeling did not affect GFP fluorescence and dual-labeling did not affect cell proliferation(P】0.05). Multipotentiality was not affected especially for cardiomyocyte-like cells differentiation.Cardiac cell marker of a-MHC and actinin were positively expressed by immunofluorescence staining after induction.SI on T2 * WI decreased substantial- ly in the interventricular septum 24 hours after injection of MSCs.The intensity of hypo-intense signals appeared to increase throughout the later time points.Changes in SI at 24 hours,3 weeks and 8 weeks were 52.98%±10.74%,21.53%±5.40%and 6.23%±2.01%,respectively(P【0.01).DE-MRI demonstrated both dual-labeled MSCSs and MSCs-GFP could dramatically reduce the size of MI and improve cardiac function. Histological data revealed that prussian blue stain-positive cells were found mainly in the border zone which also showed green fluorescence but negative for macrophage marker(CD68).Gross pathologic examination revealed that engrafted MSCs dramatically reduce the extent of necrotic myocardium and promote the regeneration of new,contractile myocardium along the subendocardial surface of the MI. Conclusions MSCs could be efficiently and safely labeled with SPIO and GFP,and could be detected reproducibly and noninvasively in vivo using cardiac MRI.Intracoronary transplantation of dual-labeled MSCs could increase cardiac function and reduce the size of MI. 展开更多
关键词 stem SPIO Magnetic resonance evaluation of transplanted mesenchymal stem cells after myocardial infarction in swine
下载PDF
VEGF-expressing Bone Marrow Mesenchymal Stem Cells Transplantation Improved Heart Function of Myocardial Infarct Rabbits 被引量:1
6
作者 盛小刚 宋卉 +2 位作者 冯建章 陈秋雄 吴书林 《South China Journal of Cardiology》 CAS 2006年第1期14-17,共4页
Objectives To treat myocardial infarction with MSCs transplantation combined with VEGF gene therapy in rabbits and to study its mechanisms. Methods Forty-eight rabbits were randomly divided into MI group (n=12), MSC... Objectives To treat myocardial infarction with MSCs transplantation combined with VEGF gene therapy in rabbits and to study its mechanisms. Methods Forty-eight rabbits were randomly divided into MI group (n=12), MSCs group (n=12), VEGF group (n=12), MSCs+VEGF group (M+V group, n=12). Rabbit myocardial infarction models were founded by the ligation of left anterior descending artery. 107 MSCs were injected into the infarct-zone in four sites 2 weeks later in MSCs and M+ V group, phVEGF gene were injected in infarct-zone in VEGF group and MSCs transfected with phVEGF gene were injected in M+V group. Heart function including LVEDP, LVSP, LVDP, -dp/dtmax, +dp/dtmax, were measured in vivo. The hearts were harvested at 4 weeks after transplantation and sectioned for HE stain, immunohistochemical stain of BrdU and VIII factor antigen. Results The left ventricular hemodynamics parameters showed that heart function were improved more in M+V group than MSCs group, MI group and VEGF group. The numbers of BrdU positive cells in M+ V group(61±8)were more than in MSCs group (44±8, P 〈 0.01). The numbers of vessels in infarcted zone were more in M+V group (49±8) than in MSCs group (33±6, P 〈 0.01),VEGF group(30±8, P 〈 0.01)and Mlgroup (18±4, P〈0.01). Conclusions VEGF-expressing MSCs transplantation could improve heart function after myocardial infarction, and they were more effective than sole MSCs transplantation. Keeping more MSCs survival and ameliorating the blood supply of infarct-zone might be involved in the mechanisms. 展开更多
关键词 myocardial infarction Bone marrow mesenchymal stem cell Vascular endothelial Growth factor
下载PDF
Experimental study of qishen yiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice with myocardial infarction
7
作者 Gui-Xin He Ting Xiao +7 位作者 Wei-Bin Qin Lin Lin Xiao-Yun Mo Qing-Wei Zhang Cheng-Qiang Wu Yong-Yan Shen Li-YanYu Yu-Fei Feng 《Journal of Hainan Medical University》 2021年第5期1-6,共6页
Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro ce... Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro cell molecular biology experiments.Methods:The animals used in this experiment were male mice with eGFP+/-.Sixty mice were randomly divided into three groups(n=20):myocardial infarction group(MI+PBS),myocardial infarction+mesenchyme plasma stem cell transplantation group(MI+MSCs)and myocardial infarction+Qishenyiqi drip pill combined with mesenchymal stem cell transplantation group(MI+MSCs+QSYQ).Qishenyiqi dripping pills were prepared into a medicinal solution with a concentration of 3.9 mg/mL with distilled water.The MI+MSCs+QSYQ group was orally administered with 0.1 mL/kg/day,and the other two groups were orally administered with an equal amount of normal saline.Mice in each group were adaptively fed continuously for 2 weeks,and the myocardial infarction model was established by ligation of the anterior descending coronary artery by thoracic ligation.Twenty-four hours after the model was established,bone marrow mesenchymal stem cells were isolated from the tibia of the mice and injected intracardiacly Bone marrow-derived mesenchymal stem cells were transplanted,and multiple injections were made around the myocardial infarction area of mice.The control group was injected with the same amount of PBS.0h,3 days,7 days,and 14 days after cell transplantation,observe the stem cell morphology under a microscope;on day 7 of cell transplantation,track the expression of eGFP-positive cells with a fluorescence microscope;before modeling,14 and 21 days after cell transplantation,use Cardiac function was measured by echocardiography.After 21 days of modeling,the mice were sacrificed,and heart samples were taken.The angiogenesis of the mice was observed by immunohistochemical staining and microvascular density determination.Results:The morphological growth of transplanted stem cells was proportional to the time of cell transplantation.Compared with MI+PBS group,CD90.2 and y6A were highly expressed on the surface of bone marrow mesenchymal stem cells in MI+MSCs group and MI+MSCs+QSYQ group,while CD31 and CD117 were almost not expressed.On the 21st day after stem cell transplantation,the values of LVDd and LVSD in MI+MSCs+QSYQ group were significantly lower than those in MI+PBS group and MI+MSCs group.At the same time,LVEF and LVFS increased significantly.The results of quantitative immunohistochemical analysis showed that the angiogenesis density in the MI+MSCs+QSYQ group increased significantly,and the difference between the groups was statistically significant(P<0.05).Conclusion:Qishen Yiqi dripping pills combined with bone marrow mesenchymal stem cell transplantation can not only promote angiogenesis in mice with myocardial infarction,but also play a positive role in improving cardiac function. 展开更多
关键词 stem cells TRANSPLANTATION Bone marrow mesenchymal stem cells Qishenyiqi drop pills myocardial infarction ANGIOGENESIS Cardiac function
下载PDF
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization 被引量:1
8
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction 被引量:23
9
作者 Jin-sheng Zhang Bao-xia Zhang +2 位作者 Mei-mei Du Xiao-ya Wang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期292-297,共6页
After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the num... After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules(20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54-and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. 展开更多
关键词 nerve regeneration Panax notoginseng saponin XUESAITONG bone marrow mesenchymal stem cell cerebral infarction MOBILIZATION peripheral circulation HOMING nerual regeneration
下载PDF
Optimal time for mesenchymal stem cell transplantation in rats with myocardial infarction 被引量:18
10
作者 Chen-yang JIANG Chun GUI +4 位作者 Ai-na HE Xin-yang HU Jie CHEN Yun JIANG Jian-an WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第8期630-637,共8页
Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of th... Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of this study was to find an optimal time point for cell transplantation. Methods: MSCs were isolated and cultured from Sprague-Dawley (SD) rats. MI model was set up in SD rats by permanent ligation of left anterior descending coronary artery. MSCs were directly injected into the infarct border zone at 1 h, 1 week and 2 weeks after MI, respectively. Sham-operated and MI control groups received equal volume of phosphate buffered saline (PBS). At 4 weeks after MI, cardiac function was assessed by echocardiography; vessel density was analyzed on hematoxylin-eosin stained slides by light microscopy; the apoptosis of cardiomyocytes was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay; the expressions of proteins were analyzed by Western blot. Results: MSC transplantation improved cardiac function, reduced the apoptosis of cardiomyocytes and increased vessel density. These benefits were more obvious in 1-week group than in 1-h and 2-week groups. There are more obvious in-creases in the ratio of bcl-2/bax and the expression of vascular endothelial growth factor (VEGF) and more obvious decreases in the expression of cleaved-caspase-3 in 1-week group than those in other two groups. Conclusion: MSC transplantation was beneficial for the recovery of cardiac function. MSC transplantation at 1 week post-MI exerted the best effects on increases of cardiac function, anti-apoptosis and angiogenesis. 展开更多
关键词 mesenchymal stem cells (MSCs) TRANSPLANTATION myocardial infarction (MI) APOPTOSIS
下载PDF
Protective Effects of Trimetazidine on Bone Marrow Mesenchymal Stem Cells Viability in an ex vivo Model of Hypoxia and in vivo Model of Locally Myocardial Ischemia 被引量:8
11
作者 徐红新 朱刚艳 田毅浩 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第1期36-41,共6页
Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury,but this approach is limited by their poor viability after transplantation.The present study was to investi... Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury,but this approach is limited by their poor viability after transplantation.The present study was to investigate whether trimetazidine (TMZ) could improve survival of MSCs in an ex vitro model of hypoxia,as well as survival,differentiation,and subsequent activities of transplanted MSCs in rat hearts with acute myocardial infarction (AMI).MSCs at passage 3 were examined for their viability and apoptosis under a transmission electron microscope,and by using flow cytometry following culture in serumfree medium and exposure to hypoxia (5% CO2,95% N2) for 12 h with or without TMZ.Thirty Wistar rats were divided into 3 groups (n=10 each group),including groupⅠ(AMI control),groupⅡ (MSCs transplantation alone),and group Ⅲ (TMZ+MSCs).Rat MSCs (4×107) were injected into peri-infarct myocardium (MSCs group and TMZ+MSCs group) 30 min after coronary artery ligation.The rats in TMZ+MSCs group were additionally fed on TMZ (2.08 mg?kg-1?day-1) from day 3 before AMI to day 28 after AMI.Cardiac structure and function were assessed by echocardiography at 28th day after transplantation.Blood samples were collected before the start of TMZ therapy (baseline),and 24 and 48 h after AMI,and inflammatory cytokines (CRP,TNF-α) were measured.Then the sur-vival and differentiation of transplanted cells in vivo were detected by immunofluorescent staining.The cellular apoptosis in the peri-infarct region was detected by using TUNEL assay.Furthermore,apoptosis-related proteins (Bcl-2,Bax) within the post-infarcted myocardium were detected by using Western blotting.In hypoxic culture,the TMZ-treated MSCs displayed a two-fold decrease in apoptosis under serumfree medium and hypoxia environment.In vivo,cardiac infarct size was significantly reduced,and cardiac function significantly improved in MSCs and TMZ+MSCs groups as compared with those in the AMI control group.Combined treatment of TMZ with MSCs implantation demonstrated further decreased MSCs apoptosis,further increased MSCs viability,further decreased infarct size,and further improved cardiac function as compared with MSCs alone.The baseline levels of inflammatory cyto-kines (CRP,TNF-α) had no significant difference among the groups.In contrast,all parameters at 24 h were lower in TMZ+MSCs group than those in MSCs group.Furthermore,Western blotting indicated that the expression of antiapoptotic protein Bcl-2 was upregulated,while the proapoptotic protein Bax was down-regulated in the TMZ+MSCs group,compared with that in the MSCs group.It is suggested that implantation of MSCs combined with TMZ treatment is superior to MSCs monotherapy for MSCs viability and cardiac function recovery. 展开更多
关键词 TRIMETAZIDINE bone marrow mesenchymal stem cells VIABILITY myocardial ischemia
下载PDF
Short- and Long-term Therapeutic Efficacies of Intravenous Transplantation of Bone Marrow Stem Cells on Cardiac Function in Rats with Acute Myocardial Infarction:A Meta-analysis of Randomized Controlled Trials 被引量:2
12
作者 Can Jiang Dong Zheng +3 位作者 Yun-lu Feng Jun Guo Hai-rui Li Ai-dong Zhang 《Chinese Medical Sciences Journal》 CAS CSCD 2016年第3期142-148,共7页
Objective To investigate the short- and long-term therapeutic efficacies of intravenous transplantation of bone marrow stem cells(MSCs) in rats with experimental myocardial infarction by metaanalysis.Methods Randomize... Objective To investigate the short- and long-term therapeutic efficacies of intravenous transplantation of bone marrow stem cells(MSCs) in rats with experimental myocardial infarction by metaanalysis.Methods Randomized controlled trials were systematically searched from Pub Med,Science Citation Index(SCI),Chinese journal full-text database(CJFD) up to December 2014.While the experimental groups(MSCs groups) were injected MSCs intravenously,the control groups were injected Delubecco's minimum essential medium(DMEM) or phosphate buffered saline(PBS).Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs.Weighted mean differences(WMD) and 95% confidence intervals(CI) were calculated for outcome parameters including ejection fraction(EF) and fractional shortening(FS),which were measured by echocardiogram after intravenous injection and analyzed by Rev Man 5.2 and STATA 12.0.Results Data from 9 studies(190 rats) were included in the meta-analysis.As compared to the control groups,the cardiac function of the experimental groups were not improved at day 7(EF:WMD=0.08,95%CI-1.32 to 1.16,P>0.01; FS:WMD=-0.12,95%CI-0.90 to 0.65,P>0.01) until at day 14 after MSCs' transplantation(EF:WMD=10.79,95%CI 9.16 to 12.42,P<0.01; FS:WMD=11.34,95%CI 10.44 to 12.23,P<0.01),and it lasted 4 weeks or more after transplantation of MSCs(EF:WMD=13.94,95%CI 12.24 to 15.64,P<0.01; FS:WMD=9.64,95%CI 7.98 to 11.31,P<0.01).Conclusion The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection. 展开更多
关键词 mesenchymal stem cells RATS myocardial infarction INTRAVENOUS
下载PDF
Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury
13
作者 Xiong-Fei Zou Bao-Zhong Zhang +1 位作者 Wen-Wei Qian Florence Mei Cheng 《World Journal of Stem Cells》 SCIE 2024年第8期799-810,共12页
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ... Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI. 展开更多
关键词 Bone marrow mesenchymal stem cells Peripheral nerve injury Schwann cells Myelin sheath Tissue engineering
下载PDF
Effect of transplantation of bone marrow stem cells on myocardial infarction size in a rabbit model 被引量:3
14
作者 Li-li Ji Xiao-feng Long +1 位作者 Hui Tian Yu-fei Liu 《World Journal of Emergency Medicine》 CAS 2013年第4期304-310,共7页
BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells c... BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction. 展开更多
关键词 Bone marrow stem cells Acute myocardial infarction Epicardial transplantation Intravenous transplantation infarct size RABBIT
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
15
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTERLEUKIN-10 Bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
Monocyte chemotactic protein 1 increases homing of mesenchymal stem cell to injured myocardium and neovascularization following myocardial infarction
16
作者 Yu Zhuang Xin Chen Kaihu Shi Ming Xu 《Journal of Nanjing Medical University》 2007年第5期311-316,共6页
Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by perm... Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by permanent left anterior descending branch ligation. Mesenchymal stem cells from donor rats were cultured in IMDM and labeled with BrdU. The Rats were divided into two groups. Monocyte chemotactic protein I(MCP-1) expression were measured by in situ hybridization and immunohistochemistry in the sham operated or infarcted hearts at 1, 2, 4, 7, 14 and 28 days post operation in MCP-1 detection group. The rats were injected with MCP-1, anti-MCP-1 antibody or saline 4 days after myocardial infarction in intervention group. Then, a total of 5 × 10^6 cells in 2.5 ml of PBS were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function and blood vessel density were assessed 28 days post injection. Results:Self-generating MCP-1 expression was increased at the first day, peaked at the 7^th day and decreased thereafter post MI and remained unchanged in sham operated hearts. The MSCs enrichment in the host hearts were more abundant in the MI groups than that in the non-MI group(P= 0.000), the MSCs enrichment in the host hearts were more abundant in the MCP-1 injected group than that in the anti-MCP-1 antibody and saline injected groups (P = 0.000). Cardiac function was improved more in MCP-1 injected group than anti-MCP-1 antibody and saline injected groups(P= 0.000). Neovascularization in MCP-1 injected group significantly increased compared with that of other groups(P = 0.000). Conclusion: Myocardial MCP-1 expression was increased only in the early phase post MI. MCP-1 may enhance MSCs homing to the injured heart and improve cardiac function by promoting neovascularization. 展开更多
关键词 mesenchymal stem cells HOMING myocardial infarction cardiac function monocyte chemotactic protein 1
下载PDF
Hematopoietic stem cells are a critical sub-population of whole bone marrow in the treatment of myocardial infarction
17
作者 Philip Davy Brienne Walker +1 位作者 Livingston Wong Richard Allsopp 《Stem Cell Discovery》 2013年第2期117-126,共10页
Recent studies suggest that whole bone marrow (WBM) derived stem cells may facilitate recovery following myocardial infarction. However, the sub-population of WBM responsible for recovery remains uncertain. By adjusti... Recent studies suggest that whole bone marrow (WBM) derived stem cells may facilitate recovery following myocardial infarction. However, the sub-population of WBM responsible for recovery remains uncertain. By adjusting the abundance of CD34+LinNeg cells in human bone marrow we examined the relative significance of hematopoietic stem cells (HSC) in the recovery of cardiac function in a murine model of induced myocardial infarction. Enrichment of HSC by ~100-fold in WBM transplanted into mice significantly increased recovery of heart function and reduced scar size compared to transplantation of WBM depleted in HSC by ~10-fold (P P < 0.01 respectively). Peri-infarct capillary density was significantly increased in recipients of HSC-enriched samples (P < 0.01) or WBM samples (P < 0.01) compared to controls. These results strongly suggest?a critical role for HSC in the effective treatment of myocardial infarction with human bone marrow, and imply that enrichment of HSC may markedly benefit the clinical application of WBM treatments. 展开更多
关键词 HEMATOPOIETIC stem cells myocardial infarction Transplantation Cardiac Disease
下载PDF
Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart 被引量:14
18
作者 王建安 李长岭 +2 位作者 樊友启 何红 孙勇 《Journal of Zhejiang University Science》 CSCD 2004年第10期1279-1285,共7页
Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 gr... Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI. 展开更多
关键词 Bone marrow-derived mesenchymal stem cells TRANSPLANTATION myocardial infarction
下载PDF
Influence of Transplantation of Allogenic Bone Marrow Mononuclear Cells on the Left Ventricular Remodeling of Rat after Acute Myocardial Infarction 被引量:2
19
作者 张瑞成 董念国 +1 位作者 侯剑峰 法宪恩 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第6期696-699,共4页
To probe into the influence of transplantation of allogenic bone marrow mononuclear cells (BM-MNCs) on the left ventricular remodeling of rat after acute myocardial infarction (AMI), 60 male Wistar rats were evenl... To probe into the influence of transplantation of allogenic bone marrow mononuclear cells (BM-MNCs) on the left ventricular remodeling of rat after acute myocardial infarction (AMI), 60 male Wistar rats were evenly divided into three groups at random: control group 1, control group 2 and transplantation group. In control group 1, chest was opened without ligation of coronary artery; in control group 2 and transplantation group, the left anterior descending branch of coronary artery was ligated to establish AMI model. Prepared culture medium and allogenic BM-MNCs suspension were respectively implanted the surrounding area of infracted cardiac muscle via epicardium of control group 2 and transplantation group. Four weeks after the operation, the osteopontin gene (OPN mRNA, P〈0.01), type Ⅰ collagen (P〈0.01) and angiotensin Ⅱ (AngⅡ, P〈0.01) content in the left ventricular non-infracted myocardium, and the Ang Ⅱ density in blood plasma (P〈0.05) of transplantation group and control group 2 were all significantly higher than that of control group Ⅰ. In the transplantation group, the myocardial OPN InRNA, type Ⅰ collagen and Ang Ⅱ content of non-infracted zone in left ventricle, and the Ang Ⅱ concentration in blood plasma were all significantly lower than those of control group 2 (P〈0.05 for all). It is concluded that allogenic BM-MNCs transplantation may ease left ventricular remodeling after AMI by inhibiting the synthesis of type Ⅰ collagen in the cardiac muscle and down-regulating the expression of Ang Ⅱ and OPN gene. 展开更多
关键词 bone marrow mononuclear cell cell transplantation RAT acute myocardial infarction ventricular remodeling
下载PDF
Extracellular vesicles from hypoxia-preconditioned mesenchymal stem cells alleviates myocardial injury by targeting thioredoxininteracting protein-mediated hypoxia-inducible factor-1αpathway 被引量:3
20
作者 Cheng-Yu Mao Tian-Tian Zhang +5 位作者 Dong-Jiu Li En Zhou Yu-Qi Fan Qing He Chang-Qian Wang Jun-Feng Zhang 《World Journal of Stem Cells》 SCIE 2022年第2期183-199,共17页
BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from ... BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from normoxic(NC)-MSCs.However,the cardioprotective mechanisms of HP-EVs are not fully understood.AIM To explore the cardioprotective mechanism of EVs derived from HP MSCs.METHODS We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse adipose-derived MSCs(ADSCs)following hypoxia in vitro or MI in vivo,in order to improve the survival of cardiomyocytes(CMs)and restore cardiac function.The degree of CM apoptosis in each group was assessed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays.MicroRNA(miRNA)sequencing was used to investigate the functional RNA diversity between HP-EVs and NC-EVs from mouse ADSCs.The molecular mechanism of EVs in mediating thioredoxin-interacting protein(TXNIP)was verified by the dual-luciferase reporter assay.Co-immunoprecipitation,western blotting,and immunofluorescence were performed to determine if TXNIP is involved in hypoxia-inducible factor-1 alpha(HIF-1α)ubiquitination and degradation via the chromosomal region maintenance-1(CRM-1)-dependent nuclear transport pathway.RESULTS HP-EVs derived from MSCs reduced both infarct size(necrosis area)and apoptotic degree to a greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo.Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind TXNIP,an oxidative stress-associated protein.We showed miRNA224-5p,the most upregulated miRNA in HP-EVs,directly combined the 3’untranslated region of TXNIP and demonstrated its critical protective role against hypoxia-mediated CM injury.Our results demonstrated that MI triggered TXNIP-mediated HIF-1αubiquitination and degradation in the CRM-1-mediated nuclear transport pathway in CMs,which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.CONCLUSION The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP. 展开更多
关键词 Extracellular vesicles myocardial infarction mesenchymal stem cells Hypoxia preconditioning Thioredoxin-interacting protein Hypoxia-inducible factor 1 alpha
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部