期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Unveiling the cellular microstructure-property relations in martensitic stainless steel via laser powder bed fusion
1
作者 Lingzhi Wu Cong Zhang +7 位作者 Dil Faraz Khan Ruijie Zhang Yongwei Wang Xue Jiang Haiqing Yin Xuanhui Qu Geng Liu Jie Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2476-2487,共12页
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect... Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established. 展开更多
关键词 laser powder bed fusion martensitic stainless steel cellular microstructure mechanical properties strengthening mechanism
下载PDF
Simulation of the Behaviour Laws in the Thermal Affected Zones of the 13Cr-4Ni Martensitic Stainless Steel
2
作者 Marcel Julmard Ongoumaka Yandza Harmel Obami-Ondon Christian Tathy 《Modern Mechanical Engineering》 2023年第4期63-76,共14页
During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficu... During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data. 展开更多
关键词 Behaviour Laws Martensitic stainless steel Residual Stresses Strain Numerical Simulation
下载PDF
Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect 被引量:5
3
作者 任发才 陈军 陈飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1407-1413,共7页
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s... Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively. 展开更多
关键词 martensitic stainless steel hot deformation behavior flow stress constitutive modeling
下载PDF
Cavitation erosion behavior of WC coatings on CrNiMo stainless steel by laser alloying 被引量:9
4
作者 Xiao-bin Zhang Chang-sheng Liu +2 位作者 Xiao-dong Liu Jiang Dong Bo Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期203-207,共5页
The WC powder was precoated on the surface of CrNiMo stainless steel and then made into an alloying layer by using the laser alloying technique. Phases in the layers were investigated by X-ray diffraction (XRD) anal... The WC powder was precoated on the surface of CrNiMo stainless steel and then made into an alloying layer by using the laser alloying technique. Phases in the layers were investigated by X-ray diffraction (XRD) analysis and surface morphologies after cavitation erosion were observed with the help of scanning electron microscopy (SEM). The cavitation erosion behavior of the CrNiMo stainless steel and WC laser alloying layer in distilled water was tested with the help of ultrasonic vibration cavitation erosion equipment. The results showed that the thickness of the laser alloying layer was about 0.13 mm. The layer had a dense microstructure, metallurgically bonded to the substrate, and no crack had been found. The cavitation erosion mass loss rate of the laser alloying layer was only 2/5 that of the CrNiMo stainless steel. The layer had better cavitation resistance properties because of its metallurgical combination and the strengthening effects of the precipitate phases. 展开更多
关键词 martensite stainless steel laser surface alloying cavitation erosion WC
下载PDF
Investigation of modeling on single grit grinding for martensitic stainless steel 被引量:5
5
作者 NIE Zhen-guo WANG Gang +2 位作者 JIANG Feng LIN Yong-liang RONG Yi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1862-1869,共8页
Single grit grinding is the simplified model to abstract the macro scale grinding.Finite element analysis is a strong tool to study the physical fields during a single grit grinding process,compared to experimental re... Single grit grinding is the simplified model to abstract the macro scale grinding.Finite element analysis is a strong tool to study the physical fields during a single grit grinding process,compared to experimental research.Based on the dynamic mechanical behavior of 2Cr12Ni4Mo3VNbN steel and the mathematical statistics of abrasive grit,modeling of the single grit grinding process was conducted by using commercial software AdvantEdge.The validation experiment was designed to validate the correctness of the FEA model by contrast with grinding force.The validation result shows that the FEA model can well describe the single grit grinding process.Then the grinding force and multi-physics fields were studied by experimental and simulation results.It was found that both the normal and tangential grinding forces were linearly related to the cutting speed and cutting depth.The maximum temperature is located in the subsurface of the workpiece in front of the grit,while the maximum stress and strain are located under the grit tip.The strain rate can reach as high as about 106 s–1 during the single grit grinding,which is larger than other traditional machining operations. 展开更多
关键词 MODELING single grit grinding grinding force MULTI-PHYSICS martensitic stainless steel
下载PDF
IMPROVEMENT OF MECHANICAL PROPERTIES OF MARTENSITIC STAINLESS STEEL BY PLASMA NITRIDING AT LOW TEMPERATURE 被引量:3
6
作者 Y. T. Xi D.X. Liu +1 位作者 D. Han Z.F. Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第1期21-29,共9页
A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out f... A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer. 展开更多
关键词 Martensitic stainless steel Plasma nitriding Low temperature Mechanical properties
下载PDF
Corrosion behavior of super 13Cr stainless steel in a H_(2)S and CO_(2) environment 被引量:2
7
作者 ZHANG Chunxia QI Yameng ZHANG Zhonghua 《Baosteel Technical Research》 CAS 2021年第2期35-41,共7页
The corrosion behavior of 95 ksi grade super 13Cr stainless steel in an environment consisting of H_(2)S and CO_(2)was investigated.The results reveal that for both loading methods(constant load and four-point bending... The corrosion behavior of 95 ksi grade super 13Cr stainless steel in an environment consisting of H_(2)S and CO_(2)was investigated.The results reveal that for both loading methods(constant load and four-point bending),local corrosion occurred on the surface of the samples tested at ambient temperature but was absent from the samples tested at high temperatures.The local corrosion was caused by the formation of pits at nonmetal inclusions;the pits were formed under the action of stress in an acidic environment,which was due to an acid solution.Subsequently,the corrosion extended along the direction of stress.The sensitivity of stress corrosion cracking increased because of the local corrosion. 展开更多
关键词 martensitic stainless steel corrosion INCLUSION H_(2)S CO_(2)
下载PDF
Effect of Ni Contents on the Microstructure and Mechanical Properties of Martensitic Stainless Steel Guide Roll by Centrifugal Casting 被引量:1
8
作者 Villando Thursdiyanto Eun-Jae Bae Eung-Ryul Baek 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期343-346,共4页
A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects ... A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects which normally occur in the overlaid welding process. In this study, the effects of Ni on the microstructure and mechanical properties of martensitic stainless steel were investigated. The results show that the addition of Ni resulted in a decrease in the volume fraction of delta ferrite and an increase in the volume fraction of the retained austenite, respectively. Moreover, a tensile strength of 1600 MPa with an elongation of 4% were obtained after tempering at 500℃ for 2 h. These values were higher than those obtained by using the conventional overlaid process. 展开更多
关键词 Centrifugal casting Martensitic stainless steel Delta ferrite Mechanical properties
下载PDF
Influence of nitrogen-alloying on the tempering properties of the martensitic stainless steel 00Cr13Ni4Mo 被引量:1
9
作者 MA Yongzhu QIN Bin CHEN Xu GU Jiaqing 《Baosteel Technical Research》 CAS 2010年第1期56-59,共4页
The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of t... The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of the tensile and corrosion tests show the strength,the ductility,and the pitting corrosion resistance of S13 -4N are higher, lower and poorer than those of S13 -6 respectively, when tempered at a temperature below 550 ℃and vice versa when the tempering temperature is higher than 550℃. The results of the X-ray diffraction (XRD) and the electron backscattered diffraction (EBSD) analyses reveal that inversed austenite appears at 550℃ and the amount of it peaks at 600 ℃ with the best ductility. And the total amount of the inversed austenite in S13 -6 is more than that in S13 -4N in different forms. Nitrogen performs better in terms of stabilizing inversed austenite while nickel is more favorable for forming inversed austenite, the amount and stability of which affect the ductility remarkably. The reason for the embrittlement of S13 -4N at 450℃ can be the result of carbide and nitride precipitating at grain boundaries. 展开更多
关键词 martensitic stainless steel 00Cr13Ni4Mo nitrogen alloying tempering property
下载PDF
Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel 被引量:2
10
作者 Qin-tian Zhu Jing Li +1 位作者 Cheng-bin Shi Wen-tao Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1149-1156,共8页
The effect of electroslag remelting(ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-C... The effect of electroslag remelting(ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis(OPA), and the carbides were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process. 展开更多
关键词 martensitic stainless steel electroslag remelting carbides
下载PDF
Effects of chloride ion concentration and pH values on the corrosion behavio of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel 被引量:1
11
作者 Hui-yan Li Chao-fang Dong +2 位作者 Kui Xiao Xiao-gang Li Ping Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第11期1286-1293,共8页
The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined ... The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting. 展开更多
关键词 martensitic stainless steel steel corrosion chloride ions pitting potential
下载PDF
Controlled Laser Transformation Hardening of Martensitic Stainless Steel by Pulsed Nd:YAG Laser 被引量:2
12
作者 B.Mahmoudi A.R.Sabour Aghdam M.J.Torkamany 《Journal of Electronic Science and Technology of China》 2010年第1期87-90,共4页
Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse en... Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse energy, duration time, and travel speed) on the depth and hardness of laser treated area were investigated. Image analysis of SEM microstructure of AISI 420 showed that plate-like carbide have almost fully and (30-40)% of globular carbide particles dissolved into the matrix after laser transformation hardening by pulsed laser and the microstructure was refined to obtain controlled tempered martensite microstructure with 450 VHN hardness. 展开更多
关键词 Laser transformation hardening martensitic stainless steel martensite microstructure pulsed Nd:YAG laser.
下载PDF
Variation and optimization of acid-dissolved aluminum content in stainless steel
13
作者 Le-chen Zhang Yan-ping Bao +1 位作者 Min Wang Chao-jie Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期408-416,共9页
As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization(VOD) deoxidation refining in a 40-... As a key step in secondary refining, the deoxidation process in clean stainless steel production is widely researched by many scholars. In this study, vacuum oxygen decarburization(VOD) deoxidation refining in a 40-t electric arc furnace + VOD + ingot casting process was analyzed and optimized on the basis of Al deoxidation of stainless steel and thermodynamic equilibrium reactions between the slag and steel. Under good stirring conditions in VOD, the deoxidation reaction reaches equilibrium rapidly, and the oxygen activity in the bulk steel is controlled by the slag composition and Al content. A basicity of 3–5 and an Al content greater than 0.015wt% in the melt resulted in an oxygen content less than 0.0006wt%. In addition, the dissolved oxygen content decreased slightly when the Al content in the steel was greater than 0.02wt%. Because of the equilibrium of the Si–O reaction between the slag and steel, the activity of SiO2 will increase while the Si content increases; thus, the Si content should be lowered to enable the formation of a high-basicity slag. A high-basicity, low-Al2O3 slag and an increased Si content will reduce the Al consumption caused by SiO2 reduction. 展开更多
关键词 martensitic stainless steel aluminum content thermodynamic equilibrium REFINING optimization
下载PDF
Fuzzy Modeling of Prediction M_s Temperature for Martensitic Stainless Steel
14
作者 姜越 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第4期106-109,共4页
A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample wa... A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting M s temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01<C<0.7; 0<Si<1.0; 0.10<Mn<1.25; 11.5<Cr< 17.5; 0<Ni<2.5; 0<Mo<1.0. Compared with that of several empirical models reported, the accuracy of the fuzzy model was almost 5 times higher than that of the best empirical model. Furthermore, the compositional dependences of Ms were successfully determined and compared with those of the empirical formulae. It was found that the specific element dependences were a function of the overall composition, something could not easily be found using conventional statistics. 展开更多
关键词 fuzzy modeling prediction model Ms temperature alloying element martensitic stainless steel
下载PDF
Processing maps and hot working mechanisms of supercritical martensitic stainless steel
15
作者 王梦寒 王瑞 +1 位作者 孟烈 王根田 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1556-1563,共8页
The hot working mechanism of 2Cr11 MolVNbN steel was investigated by means of compression tests at temperatures of900-1150 ℃ and strain rates of 0.005-5 s^(-1).At strains of 0.2,0.3,0.5 and 0.7,the relationship among... The hot working mechanism of 2Cr11 MolVNbN steel was investigated by means of compression tests at temperatures of900-1150 ℃ and strain rates of 0.005-5 s^(-1).At strains of 0.2,0.3,0.5 and 0.7,the relationship among strain rate sensitivity,power dissipation efficiency and instability parameter under different conditions were studied.Power dissipation maps and instability maps at different strains were established.The optimal and the instable deformation regimes were established by the processing maps based on the dynamic material model.The processing maps were developed for the typical strains of 0.2,0.3,0.5 and 0.7,predicting the instability regions occurring at high strain rate more than 0.05 s^(-1),which should be avoided during hot deformation.The optimized processing parameters for hot working of 2CrllMolVNbN supercritical stainless steel were temperatures of 1080-1120 ℃ and strain rates of 0.005-0.01 s^(-1). 展开更多
关键词 martensitic stainless steel processing map strain-rate sensitivity hot deformation
下载PDF
Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel
16
作者 Li Ling Xie Huasheng +3 位作者 Huang Danzhong Li Hankun Tan Rui Zhou Jingyi 《China Foundry》 SCIE CAS 2008年第3期190-193,共4页
The burn-on sand is common surface defect encountered in CO2 -cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel,its feature,causes and prevention measures are pre... The burn-on sand is common surface defect encountered in CO2 -cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel,its feature,causes and prevention measures are presented in this paper.Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating. 展开更多
关键词 burn-on defect ultra-low-carbon martensitic stainless steel chromium-corundum coatings
下载PDF
Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness
17
作者 Lou Yanchun Zhang Zhongqiu 《China Foundry》 SCIE CAS 2010年第4期383-391,共9页
The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper.... The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities. 展开更多
关键词 large martensitic stainless steel castings ultra low carbon and high cleanliness turbine runner and blade
下载PDF
Effect of heat treatment on the behavior ofδ-ferrite in B410D martensitic stainless steel
18
作者 CHANG E ZHAI Ruiyin 《Baosteel Technical Research》 CAS 2010年第1期60-63,共4页
The morphology and the evolution of δ-ferrite existing in B410D slabs, hot-rolled plates, annealed plates and quenched plates were studied through metallographic observation. Results show that δ-ferrite forms during... The morphology and the evolution of δ-ferrite existing in B410D slabs, hot-rolled plates, annealed plates and quenched plates were studied through metallographic observation. Results show that δ-ferrite forms during the solidification process and that it easily grows and increases in quantity during high temperature annealing. Band-shaped δ-ferrite in hotrolled plates is difficult to be eliminated by conventional heat treatment and hard to recrystallize. 展开更多
关键词 martensitic stainless steel Δ-FERRITE RECRYSTALLIZATION
下载PDF
Study on microstructure and mechanical properties of martensitic stainless steel 6Cr15MoV
19
作者 CHI Hongxiao~(1,2)),MA Dangshen~(1)),ZHANG Caiming~(1)),DENG Fanyu~(1)) and YONG Qilong~(1,2)) 1) Institute for Structural Materials,C,entral Iron and Steel Research Institute,Beijing 100081,China 2) Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China 《Baosteel Technical Research》 CAS 2010年第S1期81-,共1页
Martensitic stainless steel containing 12%-18%Cr have high hardness due to high carbon content. These steels are common utilized in quenching and tempering processes for knife and cutlery steel.The properties obtained... Martensitic stainless steel containing 12%-18%Cr have high hardness due to high carbon content. These steels are common utilized in quenching and tempering processes for knife and cutlery steel.The properties obtained in these materials are significantly influenced by matrix composition after heat treatment,especially as Cr and C content.Comprehensive considered the hardness and corrosion resistance,a new type martensitic stainless steel 6Cr15MoV has been developed.This study emphatic researches the effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel.Thermo-Calc software has been carried out to thermodynamic calculation;optical microscope(OM),scanning electronic microscope(SEM) and transmission electron microscope(TEM) have been carried out to microstructure observation;hardness and impact toughness test have been carried out to evaluate the mechanical properties.Results show that the equilibrium carbide in 6Cr15MoV steel is M_(23),C_6 carbide,and finely distributed of M_(23)C_6 carbides can be observed on annealed microstructure of 6Cr15MoV stainless steel.6Cr15MoV martensitic stainless steel has a wider quenching temperature range,the hardness value of steel 6Cr15MoV can reach to 60.8 -61.6 HRC when quenched at 1060 - 1100℃.Finely distributed carbides will exist in quenched microstructure,and effectively inhabit the growth of austenite grain.With the increasing of quenching temperature,the volume fraction of undissolved carbides will decrease.The excellent comprehensive mechanical properties can be obtained by quenched at 1060-1100℃with tempered at 100-150℃,and it is mainly due to the high carbon martensite and fine grain size.At these temperature ranges,the hardness will retain about 59.2-61.6 HRC and the Charpy U-notch impact toughness will retain about 17.3-20 J.The morphology of impact fracture surface of tested steel is small dimples with a small amount of cleavage planes.The area of cleavage planes increases with the increasing of tempering temperature. 展开更多
关键词 martensitic stainless steel MICROSTRUCTURE mechanical property
下载PDF
Tribological Approach and Surface Quality Analysis of Stainless Steel for Cutlery Applications after Surface Grinding
20
作者 Mayara Fernanda Pereira Bruno Souza Abrão +1 位作者 Rhander Viana Rosemar Batista da Silva 《材料科学与工程(中英文B版)》 2020年第4期134-138,共5页
In precision machining processes such as grinding,for example,analysis of machined surface is important one of most parameters to evaluate process performance.Equally important is to perform tribological analysis to u... In precision machining processes such as grinding,for example,analysis of machined surface is important one of most parameters to evaluate process performance.Equally important is to perform tribological analysis to understand chip formation and abrasive wheel wear,thus enabling manufacturing of components free of thermal damages.In grinding,due to high hardness of abrasive grains that remove material from workpiece in chip form and very low values of radial depth of cut,combination of low roughness values and tight dimensional tolerances is attained.Accordingly,the parameters involved in this process are determinant in surface quality that is primarily evaluated in terms of surface roughness and workpiece functionality.In this work,surface roughness(Rt parameter)and scanning electron microscope(SEM)images of ground surfaces of the AISI 420 martensitic stainless steel samples were evaluated.Tests were carried out in surface grinding with a white aluminum oxide wheel and an environmentally-friendly semisynthetic water-soluble coolant.Two values of radial depth of cut(10μm and 25μm)were tested.The results showed that the highest roughness values,deeper grooves on the machined surfaces as well as poorer surface quality were obtained after grinding under the severest cutting conditions. 展开更多
关键词 GRINDING AISI 420 martensitic stainless steel trigological analysis depth of cut surface roughness SEM images
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部