The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for...Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.展开更多
Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to origin...Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere.展开更多
Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of ups...Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.展开更多
The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations...The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations from the Mars Ion and Neutral Particle Analyzer onboard the Tianwen-1 orbiter,we calculated the pitch angle distributions of protons in the Martian induced magnetosphere by using information from the magnetohydrodynamically simulated magnetic field,and we statistically analyzed the spatial occurrence pattern of different types of pitch angle distributions.Even though no symmetrical features were seen in the dataset,we found the dominance of the field-aligned distribution type over the energy range from 188 to 6232 eV.Maps of the occurrence rate showed the preferential presence of a trapped-like distribution at the lower altitudes of the surveyed nightside region.Although our results are more or less restricted by the adopted magnetic field,they indicate the complexity of the near-Mars proton pitch angle distributions and infer the possibility of wave–particle interactions in the Martian induced magnetosphere.展开更多
Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which ...Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which enhanced whistler mode waves(~10^(−11) V^(2)/m^(2)/Hz)with frequency of 0.1 f_(ce)-0.5 f_(ce) occurred,based on MAVEN data,exactly corresponding to a significant decrease of suprathermal electron fluxes.The diffusion coefficients are calculated by using the observed electric field wave spectra.The pitch angle diffusion coefficient can approach 10^(−2) s^(−1),which is much larger,by~100 times,than the momentum diffusion coefficient,indicating that pitch angle scattering dominates the whistler-electron resonance process.The current results can successfully explain the dropout of the suprathermal electrons in this event.This study provides direct evidence for whistler-driven electron losses in the Martian magnetosphere.展开更多
The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel appro...The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel approach to determining the broadband Visible and Near Infrared(VNIR)albedo of the Martian surface.This study focuses on albedo changes in the McMurdo crater,part of Mars’s south polar layer deposits.We compare seasonal and interannual variations of the McMurdo surface albedo before,during,and after the Global Dust Storm(GDS)of Martian Year(MY)34.As the seasons progressed from spring to summer,the mean albedo in MY 32 and 34 plunged by over 40%,by about 35%in MY 33,and by slightly more than 30%in MY 35.Compared interannually,however,mean albedo values within both seasons(spring and summer)exhibited no significant differences in those same years.Notably,interannual albedo difference maps reveal albedo variation of more than±0.3 in certain regions of the crater.Considering only snow-covered pixels,interannual albedo differences suggest that Mars dust had a pervasive impact on Mars’s cryosphere.Variations in maximum and minimum albedo values as high as 0.5 were observed,depending upon differences in the dust levels in Martian snow/ice.The maximum and the minimum snow albedo values were lowest in MY 34,indicating the effect of the intense dust storm event that year.The average snow albedo decreased from 0.45 in MY 32 to 0.40 in MY 33 and to 0.33 in MY 34,and then rose back to 0.40 in MY 35.This trajectory suggests a temporary deposition of dust,partially reversed after the GDS by self-cleaning mechanisms(local aeolian process and CO_(2)sublimation/deposition cycle).展开更多
The SNIT theory proposes the effects of exploding stars,supernova and nova,on the biosphere of Earth.The feature on our planet that is most sensitive to the incoming energy of an exploding star is sea ice at the poles...The SNIT theory proposes the effects of exploding stars,supernova and nova,on the biosphere of Earth.The feature on our planet that is most sensitive to the incoming energy of an exploding star is sea ice at the poles and this brings in the concept of global warming.The incoming particle streams for SN 1054,SN 1006,and Nova WZ Sagittae have left easily interpreted data noted as calving under the Antarctic ice cap that matches previously predicted longitude locations for the local heat input of the particle streams of the exploding stars.Animal die offs are also caused by the incoming particle streams.The deflection area longitude range for SN 1054 calving produces the correct longitude range for the moose die off beginning in the northern USA in 2006.Some Martian dust storms are created by the wave front of the exploding star debris streams.The explanation of these exploding stars effects using the SNIT theory is the object of this work.展开更多
This paper gives a brief introduction of YingHuo-1(YH-1),a Chinese Martian Space Environment Exploration Orbiter.YH-1 is a micro-satellite developed by Chinese Aerospace Industry,and will be launched together with Rus...This paper gives a brief introduction of YingHuo-1(YH-1),a Chinese Martian Space Environment Exploration Orbiter.YH-1 is a micro-satellite developed by Chinese Aerospace Industry,and will be launched together with Russian spacecraft,Phobos-Grunt,to orbit Mars in September,2009.Four payloads are selected for the mission,plasma package,including of electron analyzer,ion energy and mass analyzer;sat-sat occultation receiver;flux-gate magnetometer;and optical monitor.YH-1 mission focus on the investigation of the characteristics and its evolution of the Martian space Environment,and identifying major plasma processes,which provide channels for Martian volatiles escaping.展开更多
Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butt...Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butterfly”distribution,presents a local minimum flux at 90°and a maximum flux before reaching the local loss cone.Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization.Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft,we identify 513 BEC events for 19-55 eV photoelectrons that were generated via photoionization only.Therefore,we are investigating electrons observed in regions well away from their source regions,to be distinguished from 115 eV electrons observed and produced in the same regions.We investigate the spatial distribution of the 19-55 eV BECs,revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies.We propose that the 19-55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.展开更多
To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ra...To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金financial support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41030000)the National Natural Science Foundation of China (Grant Nos. 42125402, 42188101, 42304165, and 42374182)+2 种基金the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0303020001)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300302)
文摘Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.
基金the National Natural Science Foundation of China(42030101,42204158)Shanghai Pujiang Program(No.21PJD078)+1 种基金Shanghai Science and Technology Innovation Action Plan(No.21DZ1206100)the Fundamental Research Funds for the Central Universities.
文摘Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere.
基金supported by the National Natural Science Foundation of China(Grant No.42304186)China Postdoctoral Science Foundation(2023M743466)+3 种基金the Key Research Program of Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology&Geophysics,CAS(Grant No.s IGGCAS-201904,IGGCAS-202102)supported by the International Space Science Institute(ISSI)in Bern and Beijing,through ISSI/ISSI-BJ International Team project“Understanding the Mars Space Environment through Multi-Spacecraft Measurements”(ISSI Team project#23–582ISSIBJ Team project#58).
文摘Using over eight years of Mars Atmosphere and Volatile Evolutio N(MAVEN)data,from November 2014 to May 2023,we have investigated the Martian nightside ionospheric magnetic field distribution under the influence of upstream solar wind drivers,including the interplanetary magnetic field intensity(∣BIMF∣),solar wind dynamic pressure(PS W),solar extreme ultraviolet flux(EUV),and Martian seasons(L s).Our analysis reveals pronounced correlations between magnetic field residuals and both∣BIMF∣and PS W.Correlations observed with EUV flux and Ls were weaker—notably,magnetic field residuals increased during periods of high EUV flux and at Mars perihelion.We find that the IMF penetrates to an altitude of 200 km under a wide range of upstream conditions,penetrating notably deeper under high∣BIMF∣andPSWconditions.Our analysis also indicates that EUV flux and IMF cone angle have minimal impact on IMF penetration depth.Those findings provide useful constraints on the dynamic nature of Martian atmospheric escape processes and their evolution,suggesting that historical solar wind conditions may have facilitated deeper IMF penetration and higher rates of ionospheric escape than are observed now.Moreover,by establishing criteria for magnetic‘quiet’conditions,this study offers new insights into the planet’s magnetic environment under varying solar wind influences,knowledge that should help refine models of the Martian crustal magnetic field.
基金supported by the National Natural Science Foundation of China(Grant No.42241143)the pre-research projects on Civil Aerospace Technologies(No.D020104)funded by the China National Space Administration.
文摘The pitch angle distributions of ions and electrons can be affected by various processes;thus,they can serve as an important indicator of the physical mechanisms driving the dynamics of space plasmas.From observations from the Mars Ion and Neutral Particle Analyzer onboard the Tianwen-1 orbiter,we calculated the pitch angle distributions of protons in the Martian induced magnetosphere by using information from the magnetohydrodynamically simulated magnetic field,and we statistically analyzed the spatial occurrence pattern of different types of pitch angle distributions.Even though no symmetrical features were seen in the dataset,we found the dominance of the field-aligned distribution type over the energy range from 188 to 6232 eV.Maps of the occurrence rate showed the preferential presence of a trapped-like distribution at the lower altitudes of the surveyed nightside region.Although our results are more or less restricted by the adopted magnetic field,they indicate the complexity of the near-Mars proton pitch angle distributions and infer the possibility of wave–particle interactions in the Martian induced magnetosphere.
基金the National Natural Science Foundation of China grants 42230209, 42241136, 42374199, 42204171, 42274212the Natural Science Foundation of Hunan province Grant 2021JJ20010, 2023JJ20038
文摘Whistler mode waves are critical emissions in magnetized plasmas that usually influence the electron dynamics in a planetary magnetosphere.In this paper,we present a unique event in the Martian magnetosphere in which enhanced whistler mode waves(~10^(−11) V^(2)/m^(2)/Hz)with frequency of 0.1 f_(ce)-0.5 f_(ce) occurred,based on MAVEN data,exactly corresponding to a significant decrease of suprathermal electron fluxes.The diffusion coefficients are calculated by using the observed electric field wave spectra.The pitch angle diffusion coefficient can approach 10^(−2) s^(−1),which is much larger,by~100 times,than the momentum diffusion coefficient,indicating that pitch angle scattering dominates the whistler-electron resonance process.The current results can successfully explain the dropout of the suprathermal electrons in this event.This study provides direct evidence for whistler-driven electron losses in the Martian magnetosphere.
基金support from the Indian Institute of Technology Bombay (IITB) for providing the necessary facility and IITB seed grant.
文摘The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel approach to determining the broadband Visible and Near Infrared(VNIR)albedo of the Martian surface.This study focuses on albedo changes in the McMurdo crater,part of Mars’s south polar layer deposits.We compare seasonal and interannual variations of the McMurdo surface albedo before,during,and after the Global Dust Storm(GDS)of Martian Year(MY)34.As the seasons progressed from spring to summer,the mean albedo in MY 32 and 34 plunged by over 40%,by about 35%in MY 33,and by slightly more than 30%in MY 35.Compared interannually,however,mean albedo values within both seasons(spring and summer)exhibited no significant differences in those same years.Notably,interannual albedo difference maps reveal albedo variation of more than±0.3 in certain regions of the crater.Considering only snow-covered pixels,interannual albedo differences suggest that Mars dust had a pervasive impact on Mars’s cryosphere.Variations in maximum and minimum albedo values as high as 0.5 were observed,depending upon differences in the dust levels in Martian snow/ice.The maximum and the minimum snow albedo values were lowest in MY 34,indicating the effect of the intense dust storm event that year.The average snow albedo decreased from 0.45 in MY 32 to 0.40 in MY 33 and to 0.33 in MY 34,and then rose back to 0.40 in MY 35.This trajectory suggests a temporary deposition of dust,partially reversed after the GDS by self-cleaning mechanisms(local aeolian process and CO_(2)sublimation/deposition cycle).
文摘The SNIT theory proposes the effects of exploding stars,supernova and nova,on the biosphere of Earth.The feature on our planet that is most sensitive to the incoming energy of an exploding star is sea ice at the poles and this brings in the concept of global warming.The incoming particle streams for SN 1054,SN 1006,and Nova WZ Sagittae have left easily interpreted data noted as calving under the Antarctic ice cap that matches previously predicted longitude locations for the local heat input of the particle streams of the exploding stars.Animal die offs are also caused by the incoming particle streams.The deflection area longitude range for SN 1054 calving produces the correct longitude range for the moose die off beginning in the northern USA in 2006.Some Martian dust storms are created by the wave front of the exploding star debris streams.The explanation of these exploding stars effects using the SNIT theory is the object of this work.
文摘This paper gives a brief introduction of YingHuo-1(YH-1),a Chinese Martian Space Environment Exploration Orbiter.YH-1 is a micro-satellite developed by Chinese Aerospace Industry,and will be launched together with Russian spacecraft,Phobos-Grunt,to orbit Mars in September,2009.Four payloads are selected for the mission,plasma package,including of electron analyzer,ion energy and mass analyzer;sat-sat occultation receiver;flux-gate magnetometer;and optical monitor.YH-1 mission focus on the investigation of the characteristics and its evolution of the Martian space Environment,and identifying major plasma processes,which provide channels for Martian volatiles escaping.
基金supported by the B-type Strategic Priority Program No.XDB4100000funded by the Chinese Academy of Sciences and the pre-research projects on Civil Aerospace Technologies No.D020105 and D020104+1 种基金funded by China’s National Space Administrationthe National Natural Science Foundation of China through grants 41525015,41774186,and 41904154.
文摘Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butterfly”distribution,presents a local minimum flux at 90°and a maximum flux before reaching the local loss cone.Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization.Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft,we identify 513 BEC events for 19-55 eV photoelectrons that were generated via photoionization only.Therefore,we are investigating electrons observed in regions well away from their source regions,to be distinguished from 115 eV electrons observed and produced in the same regions.We investigate the spatial distribution of the 19-55 eV BECs,revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies.We propose that the 19-55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.
基金Project(2017YFC0805100)supported by the National Key R&D Program of ChinaProject(GUIKE AA18118030)supported by Guangxi Innovation-driven Development Program,ChinaProject(N172502003)supported by the Fundamental Research Funds for the Central Universities,China.
文摘To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.