期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于对比学习的多特征融合戴口罩人脸识别 被引量:2
1
作者 陈岸明 林群雄 刘伟强 《计算机应用研究》 CSCD 北大核心 2024年第1期277-281,287,共6页
随着计算机视觉技术应用的发展和智能终端的普及,口罩遮挡人脸识别已成为人物身份信息识别的重要部分。口罩的大面积遮挡对人脸特征的学习带来极大挑战。针对戴口罩人脸特征学习困难这一问题,提出了一种基于对比学习的多特征融合口罩遮... 随着计算机视觉技术应用的发展和智能终端的普及,口罩遮挡人脸识别已成为人物身份信息识别的重要部分。口罩的大面积遮挡对人脸特征的学习带来极大挑战。针对戴口罩人脸特征学习困难这一问题,提出了一种基于对比学习的多特征融合口罩遮挡人脸识别算法,该算法改进了传统的基于三元组关系的人脸特征向量学习损失函数,提出了基于多实例关系的损失函数,充分挖掘戴口罩人脸和完整人脸多个正负样本之间的同模态内和跨模态间的关联关系,学习人脸中具有高区分度的能力的特征,同时结合人脸眉眼等局部特征和轮廓等全局特征,学习口罩遮挡人脸的有效特征向量表示。在真实的戴口罩人脸数据集和生成的戴口罩人脸数据上与基准算法进行了比较,实验结果表明所提算法相比传统的基于三元组损失函数和特征融合算法具有更高的识别准确率。 展开更多
关键词 戴口罩人脸识别 对比学习 特征融合 口罩生成
下载PDF
面向汉越跨语言事件检索的事件预训练方法
2
作者 吴少扬 余正涛 +3 位作者 黄于欣 朱恩昌 高盛祥 邓同杰 《中文信息学报》 CSCD 北大核心 2024年第4期78-85,共8页
汉越跨语言事件检索是用汉语查询检索越南语事件新闻的任务。由于越南语属于典型的低资源语言,汉越跨语言事件检索缺乏大规模的标注数据,并且现有的跨语言预训练模型无法很好地表征文本中丰富的汉越对齐事件知识,不适用于该任务。因此,... 汉越跨语言事件检索是用汉语查询检索越南语事件新闻的任务。由于越南语属于典型的低资源语言,汉越跨语言事件检索缺乏大规模的标注数据,并且现有的跨语言预训练模型无法很好地表征文本中丰富的汉越对齐事件知识,不适用于该任务。因此,为了将汉越双语对齐的事件知识融入到多语言预训练语言模型中,该文提出了两个预训练方法,即事件要素掩码预训练以及跨语言事件对比预训练。在该文构造的汉越跨语言事件检索数据集和公开跨语言问答数据集上进行了实验,比基线提升1%~3%MAP值,2%~4%NDCG值,证明了该文方法的有效性。 展开更多
关键词 事件预训练 跨语言事件检索 掩码语言模型 对比学习
下载PDF
基于AL-Transformer的铁路客运站旅客属性识别方法
3
作者 张波 《铁路计算机应用》 2024年第2期7-12,共6页
随着铁路运力的不断提升,旅客在铁路客运站内候车的频次和时间也在不断增加,为主动挖掘候车旅客的个性化需求,提出一种基于AL-Transformer(Attribute Localization-Transformer)模型的铁路客运站旅客属性识别方法。AL-Transformer模型基... 随着铁路运力的不断提升,旅客在铁路客运站内候车的频次和时间也在不断增加,为主动挖掘候车旅客的个性化需求,提出一种基于AL-Transformer(Attribute Localization-Transformer)模型的铁路客运站旅客属性识别方法。AL-Transformer模型基于Swin Transformer主干网络提取进站旅客的结构化信息,通过掩码对比学习(MCL,Mask Contrast Learning)框架抑制特征区域相关性,获取到更有辨识度的属性区域;通过属性空间记忆(ASM,Attribute Spatial Memory)模块选取更加可靠、稳定的属性相关区域。在中国铁路兰州局集团有限公司白银南站试用的效果表明,该方法可有效识别旅客属性,为客运站工作人员推送更有针对性的信息,提升客运站的旅客服务质量,保障旅客候车安全。 展开更多
关键词 属性识别 AL-Transformer模型 掩码对比学习(mcl) 属性空间记忆(ASM) 旅客异常行为
下载PDF
掩码语言增强表示的对比学习微调和应用
4
作者 张德驰 万卫兵 《计算机工程与应用》 CSCD 北大核心 2024年第17期129-138,共10页
在基于Transformer的语言模型中自注意力网络扮演了重要的角色,其中的全连接结构能够以并行方式捕捉序列中非连续的依赖关系。但是,全连接的自注意力网络很容易过拟合到虚假关联信息上,比如词与词、词与预测目标之间的虚假关联。这种过... 在基于Transformer的语言模型中自注意力网络扮演了重要的角色,其中的全连接结构能够以并行方式捕捉序列中非连续的依赖关系。但是,全连接的自注意力网络很容易过拟合到虚假关联信息上,比如词与词、词与预测目标之间的虚假关联。这种过拟合问题限制了语言模型对领域外或分布外数据的泛化能力。为了提高Transformer语言模型对虚假关联的鲁棒性以及泛化能力,提出掩码语言增强表示的对比学习微调框架(fine-tuning framework via mask language model enhanced representations based contrastive learning,MCL-FT)。具体而言,文本序列和其随机掩码后的序列送入到一个孪生网络,结合对比学习目标和下游任务目标对模型进行参数学习。其中,每一个孪生网络由预训练语言模型和任务分类器组成。所以,该微调框架更加符合掩码语言模型预训练学习方式,能够在下游任务中保持预训练知识的泛化能力。在MNLI、FEVER和QQP数据集以及它们的挑战数据集上与最新的基线模型进行了对比,包括大语言模型ChatGPT、GPT4、LLaMA,实验结果验证了提出模型在保证分布内性能的同时有效提高了分布外的性能。在ATIS和Snips数据集上的实验结果证明,该模型在常见自然语言处理任务中也有显著的效果。 展开更多
关键词 TRANSFORMER 掩码语言模型 对比学习 微调 虚假关联 泛化能力
下载PDF
基于动态掩码和多对对比学习的序列推荐模型
5
作者 郑顺 王绍卿 +2 位作者 刘玉芳 李可可 孙福振 《山东大学学报(工学版)》 CSCD 北大核心 2023年第6期47-55,共9页
为解决BERT(bidirectional encoder representations from transformers)编码器在掩码过程中人为引入噪音、掩码比例过小难以掩盖短交互序列中的项目以及掩码比例过大导致模型难以训练3个问题,提出一种更改BERT编码器掩码方式的对比学... 为解决BERT(bidirectional encoder representations from transformers)编码器在掩码过程中人为引入噪音、掩码比例过小难以掩盖短交互序列中的项目以及掩码比例过大导致模型难以训练3个问题,提出一种更改BERT编码器掩码方式的对比学习方法,为模型提供3类学习样本,使模型在训练过程中模仿人类学习进程,从而取得较好的结果。提出的算法在3个公开数据集上进行对比试验,性能基本优于基线模型,其中,在MovieLens-1M数据集上HR@5和NDCG@5指标分别提高9.68%和10.55%。由此可见,更改BERT编码器的掩码方式以及新的对比学习方法能够有效提高BERT编码器的编码准确性,从而提高推荐的正确率。 展开更多
关键词 自注意力 完形填空 序列推荐 对比学习 动态掩码 推荐系统
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部