Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH f...One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.展开更多
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami...The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.展开更多
The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for s...The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.展开更多
Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic...Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.展开更多
Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the To...Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the Tongling district deposits was modeled and analyzed. It is shown that: (1) Mass and energy flow caused by fluid flow is key problem of kythrothermal ore-forming processes; the heating from magma intruded is basic power for driving fluid flow. (2) occurrence of pluton, different chemical property and porosity of wall rocks and infiltration restrict the specifically field of precipitation for ore-forming material.Therefore, the dissolution and precipitation field for ore-forming material in deposit can be forecasted. (3) Iron and sulfur material comes mostly from sandstone formation of Wutong Group, which contains pyrite and high porosity. The cataclastic dolomite interlayered in sandstone and limestone is a favorable place for ore accumulating. The difference of chemical property between sandstone and dolomite forms a favorable interface for ore-forming processes.展开更多
Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numer...Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.展开更多
In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework ...In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.展开更多
Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield sc...Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield scale solute transport by aid of evaluation of existing models, and examining transport behaviors of solutein vadose zones on different scales. The results indicate that present research progress and understanding onfield scale solute transport have not yet been enough to guarantee the use of our models for the management offield solute movement. Much more research work needs to be done, particularly, in aspects of high resolutionof spatial structures relevant to the hydraulic and transport properties, explicit numerical simulation of actualstructure on field scale and field measurement corroborated with model development.展开更多
Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological m...Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological model.of water flow and a hydrodynamic model of contaminant are presented to simulate the migration of leachate through clay-solidified grouting curtain in MSW landfills, with particular attention paid to the role of diffusive and adsorptive fluxes in contaminant transport. The models were applied to simulate the sensitivity of the curtain's behavior to changes in parameters, such as thickness, depth, permeability coefficient, diffusion coefficient,resistance coefficient and concentration, and also to demonstrate the contaminant distribution on the evolution of travel time and offset distance of clay-solidified grouting curtain in landfills. It is found that a part of leachate components stays or is retarded in clay-solidified grouting curtain by precipitate or exchange, the retention rate is closely related to composition of clay-solidified grouting curtain, more than 800%, and the maximum occurs at the cementclay ratio of 2: 4 under experimental conditions. Contamination distribution is variable on travel time and offset distance, the highest concentration takes place where the contamination intensity is nearest to the pollution resource or takes place at early middle period of transport, and the pollutant attenuates gradually. The results indicate that claysolidified grouting curtain with a proper thickness, a low permeability coefficient and a high resistance coefficient might serve as a sufficiently effective vertical barrier against leachate seepage and contamination migration in MSWlandfills.展开更多
Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on m...Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on meridional sections along 8?20′W and 6?15′W and between these longitudes on a zonal section along 35?50′N. The mesoscale and the submesoscale structures (Mediterranean Water Undercurrents, meddies, cyclones) observed along these sections are characterized in terms of thermohaline properties and of velocity. The transports of mass and salt in each class of density (North Atlantic Central Water, Mediterranean Water, North Atlantic Deep Water) are computed with an inverse model. The model indicates a general eastward flux in the Central Water layer, and a westward flux in the Mediterranean Water layer, but there is also a horizontal recirculation and entrainment in these two layers, as well as strong transports associated with the meddy and cyclone found during Semane 1999.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coe...Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coefficients, and a 3D transport model based on mixture theory is proposed for describing the liners that involve circular defects in the geomembrane. The elastoplastic ALPHA model is revised by using the spatially mobilized plane (SMP) criterion for simulating the deformation of the soils. Then, the 3D model coupling the nonlinear consolidation and contaminant advection-diffusion is solved using the finite element software ABAQUS. The results show that the importance of reducing the defect size in the geomembrane and the liner porosity to control the contaminant concentration increase展开更多
Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic externa...Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic external potential field on the mass transport. Traveling wave and standing wave potential fields have been employed as our dynamic potential field. We found that mass transport can be promoted by the traveling wave field when the external potential moves along the direction of the mass current. When the standing wave field is exerted on the channel, the channel is found to work like a switch. The mass current can be "on" or "off" by adjusting the standing wave frequency. The effects of the period number,the amplitude and the velocity of the external potential on the mass transport are also discussed. Our research provides valuable advice for the control o particle transport through one-dimensional channels.展开更多
Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CP...Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CPA addition and removal is essential to cell survival. In this study, the feasibility of using porous membrane to control the rate of CPA transfer to cell environment is studied, A purpose designed diffusion chamber was fabricated. The effects of membrane characteristics (porosity and effective thickness), temperature, and initial concentration were experimentally studied. A simplified mathematical model was developed, which provides the basis to desire the membrane parameters based on tile experimental measurements.展开更多
A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness...A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.展开更多
Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closi...Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.展开更多
Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with...Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with a 3 - D joint model for the Hangzhou Bay and the Changjiang Estuary, in which the impacts of river flux, wind, baroclinic pressure gradient (BPG), background current in the East China Sea and tide (including M2, S2, K1 and O1) are taken into account. Based on there studies, further simulations are made to analyze the dynamical mechanisms of the observational characteristics.展开更多
Penetration of chemicals in the soil ground through irrigation water or rainfall induces important risks for the environment. These risks are badly known and may lead to direct contamination of the environment (atmosp...Penetration of chemicals in the soil ground through irrigation water or rainfall induces important risks for the environment. These risks are badly known and may lead to direct contamination of the environment (atmosphere or ground water) or harmful effects on organisms living at ground level, indirectly affecting men. It is thus necessary to estimate these potential chemical risks on the environment. For that reason, the gradual change of these products (fertilizers, solutions, pollutants, ...) in the ground has been the subject of a lot of recent research works, based in particular on the study of non-saturated porous media in a theoretical, numerical or experimental way. Most of these works are incomplete and, in order to simplify the problem, they don’t take into accounts some process, which may be of prime importance under particular natural conditions. Complexity of such studies results from their multidisciplinary nature. In this communication, we study simultaneous transport of pollutant, the water that provides transport and the heat transfer in a 200 cm long cylindrical column full of sand taken as a non-saturated porous medium. We consider two kinds of conditions on the temperature at the column surface: the case of constant temperature and the case of sinusoidal temperature. We evaluate the influence of this temperature on the transfers. This study is purely numerical. We use the control volume method to determine hydrous, thermal and pollutant concentration profiles.展开更多
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
基金supported by funds from the Scientific Research Projects of High-level Talents of the Department of Human Resources and Social Security of Anhui Province (Grant No.2009Z019)the State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry (Grant No.LAPC-KF-201105)
文摘One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.
文摘The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory.
基金The work was supported by CRCG Research Grant 10203302 awarded by the University of Hong Kong,and Grants HKU 7117/99E and HKU 7081/02E awarded by the Research Grants Council of the Hong Kong Special Administrative Region
文摘The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.
基金The National Natural Science Foundation of China under contract Nos 41306057 and 40906028the Open Fund of the Key Laboratory of Submarine Geosciences,State Oceanic Administration under contract No.KLSG1406
文摘Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.
文摘Based on dynamics of heat conduction, fluid flow caused by heating and chemical material transport induced by fluid flow, temperature and stream fields of fluid flow in ore-forming processes of Cu-Au sulfide in the Tongling district deposits was modeled and analyzed. It is shown that: (1) Mass and energy flow caused by fluid flow is key problem of kythrothermal ore-forming processes; the heating from magma intruded is basic power for driving fluid flow. (2) occurrence of pluton, different chemical property and porosity of wall rocks and infiltration restrict the specifically field of precipitation for ore-forming material.Therefore, the dissolution and precipitation field for ore-forming material in deposit can be forecasted. (3) Iron and sulfur material comes mostly from sandstone formation of Wutong Group, which contains pyrite and high porosity. The cataclastic dolomite interlayered in sandstone and limestone is a favorable place for ore accumulating. The difference of chemical property between sandstone and dolomite forms a favorable interface for ore-forming processes.
基金Project(2011BAJ03B07)supported by National Twelve Five-year Science and Technology Support Program of ChinaProject supported by the China Scholarship Council+1 种基金Project(51276057,51376198)supported by the National Natural Science Foundation of ChinaProject(CX2014B064)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91441205 and 91941301)China Postdoctoral Science Foundation(Grant No.2018M642007).
文摘In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.
文摘Agro-chemical transport processes at different scales are discussed and relevant opening questions areidentified by literature review to make some suggestions concerning the improvement of research methods forfield scale solute transport by aid of evaluation of existing models, and examining transport behaviors of solutein vadose zones on different scales. The results indicate that present research progress and understanding onfield scale solute transport have not yet been enough to guarantee the use of our models for the management offield solute movement. Much more research work needs to be done, particularly, in aspects of high resolutionof spatial structures relevant to the hydraulic and transport properties, explicit numerical simulation of actualstructure on field scale and field measurement corroborated with model development.
文摘Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological model.of water flow and a hydrodynamic model of contaminant are presented to simulate the migration of leachate through clay-solidified grouting curtain in MSW landfills, with particular attention paid to the role of diffusive and adsorptive fluxes in contaminant transport. The models were applied to simulate the sensitivity of the curtain's behavior to changes in parameters, such as thickness, depth, permeability coefficient, diffusion coefficient,resistance coefficient and concentration, and also to demonstrate the contaminant distribution on the evolution of travel time and offset distance of clay-solidified grouting curtain in landfills. It is found that a part of leachate components stays or is retarded in clay-solidified grouting curtain by precipitate or exchange, the retention rate is closely related to composition of clay-solidified grouting curtain, more than 800%, and the maximum occurs at the cementclay ratio of 2: 4 under experimental conditions. Contamination distribution is variable on travel time and offset distance, the highest concentration takes place where the contamination intensity is nearest to the pollution resource or takes place at early middle period of transport, and the pollutant attenuates gradually. The results indicate that claysolidified grouting curtain with a proper thickness, a low permeability coefficient and a high resistance coefficient might serve as a sufficiently effective vertical barrier against leachate seepage and contamination migration in MSWlandfills.
文摘Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on meridional sections along 8?20′W and 6?15′W and between these longitudes on a zonal section along 35?50′N. The mesoscale and the submesoscale structures (Mediterranean Water Undercurrents, meddies, cyclones) observed along these sections are characterized in terms of thermohaline properties and of velocity. The transports of mass and salt in each class of density (North Atlantic Central Water, Mediterranean Water, North Atlantic Deep Water) are computed with an inverse model. The model indicates a general eastward flux in the Central Water layer, and a westward flux in the Mediterranean Water layer, but there is also a horizontal recirculation and entrainment in these two layers, as well as strong transports associated with the meddy and cyclone found during Semane 1999.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
基金supported by the National Natural Science Foundation of China (50778013)the National Basic Research Program (973) of China (2010CB732100)
文摘Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coefficients, and a 3D transport model based on mixture theory is proposed for describing the liners that involve circular defects in the geomembrane. The elastoplastic ALPHA model is revised by using the spatially mobilized plane (SMP) criterion for simulating the deformation of the soils. Then, the 3D model coupling the nonlinear consolidation and contaminant advection-diffusion is solved using the finite element software ABAQUS. The results show that the importance of reducing the defect size in the geomembrane and the liner porosity to control the contaminant concentration increase
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313367)
文摘Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic external potential field on the mass transport. Traveling wave and standing wave potential fields have been employed as our dynamic potential field. We found that mass transport can be promoted by the traveling wave field when the external potential moves along the direction of the mass current. When the standing wave field is exerted on the channel, the channel is found to work like a switch. The mass current can be "on" or "off" by adjusting the standing wave frequency. The effects of the period number,the amplitude and the velocity of the external potential on the mass transport are also discussed. Our research provides valuable advice for the control o particle transport through one-dimensional channels.
文摘Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CPA addition and removal is essential to cell survival. In this study, the feasibility of using porous membrane to control the rate of CPA transfer to cell environment is studied, A purpose designed diffusion chamber was fabricated. The effects of membrane characteristics (porosity and effective thickness), temperature, and initial concentration were experimentally studied. A simplified mathematical model was developed, which provides the basis to desire the membrane parameters based on tile experimental measurements.
基金The National Natural Science Foundation of China (No. 40506028 30270258) the Encouraging Foundation for Outstanding YouthScientists of Shandong Province (No. 03BS120) and the China Postdoctoral Science Foundation (No. 2005037237)
文摘A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.
文摘Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.
基金the Major Stste Basic Research Program Under contract Grand No. G1999043803, theNational Natural Science Foundation of China u
文摘Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with a 3 - D joint model for the Hangzhou Bay and the Changjiang Estuary, in which the impacts of river flux, wind, baroclinic pressure gradient (BPG), background current in the East China Sea and tide (including M2, S2, K1 and O1) are taken into account. Based on there studies, further simulations are made to analyze the dynamical mechanisms of the observational characteristics.
文摘Penetration of chemicals in the soil ground through irrigation water or rainfall induces important risks for the environment. These risks are badly known and may lead to direct contamination of the environment (atmosphere or ground water) or harmful effects on organisms living at ground level, indirectly affecting men. It is thus necessary to estimate these potential chemical risks on the environment. For that reason, the gradual change of these products (fertilizers, solutions, pollutants, ...) in the ground has been the subject of a lot of recent research works, based in particular on the study of non-saturated porous media in a theoretical, numerical or experimental way. Most of these works are incomplete and, in order to simplify the problem, they don’t take into accounts some process, which may be of prime importance under particular natural conditions. Complexity of such studies results from their multidisciplinary nature. In this communication, we study simultaneous transport of pollutant, the water that provides transport and the heat transfer in a 200 cm long cylindrical column full of sand taken as a non-saturated porous medium. We consider two kinds of conditions on the temperature at the column surface: the case of constant temperature and the case of sinusoidal temperature. We evaluate the influence of this temperature on the transfers. This study is purely numerical. We use the control volume method to determine hydrous, thermal and pollutant concentration profiles.