The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0....The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.展开更多
Measurements of K-shell mass attenuation coefficients are reported for the first time in Arsenic oxide (As<sub>2</sub>O<sub>3</sub>). Experiments are performed using Arsenic Oxide extended rang...Measurements of K-shell mass attenuation coefficients are reported for the first time in Arsenic oxide (As<sub>2</sub>O<sub>3</sub>). Experiments are performed using Arsenic Oxide extended range HPGe detector. To achieve measurements at many small and regular energy intervals, secondary X-ray emission technique using “Seventeen Scatters” is employed. The results are in agreement with the proposed theoretical estimates. No evidence could, however be gained in favor of microscopic theories such as RRS and EXAFS, insofar as there are no energy points within a range of 100eV on either side of the K-edge.展开更多
Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,...Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.展开更多
The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use gran...The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use granite, and compares them with the lead because of its high blocking ability for this type of radiation. This paper concluded through linear and mass attenuation coefficients measurements that these coefficients decrease with increasing incident photons energy. Measurements also showed that the linear attenuation coefficients appropriate linearly with density while mass attenuation coefficients do not get affected.展开更多
In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared...In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.展开更多
In this study,we aimed to determine the radiation parameters of some potential bioactive compounds.1-Aryl-3-dibenzylamino-propane-1-on hydrochloride type Mannich bases were synthesized via classical conventional heati...In this study,we aimed to determine the radiation parameters of some potential bioactive compounds.1-Aryl-3-dibenzylamino-propane-1-on hydrochloride type Mannich bases were synthesized via classical conventional heating method.Aryl part was changed as phenyl(C6H5),4-methylphenyl(4-CH3C6H4),4-fluorophenyl(4-FC6H4),4-nitrophenyl(4-NO2C6H4),4-chlorophenyl(4-ClC6H4),4-bromophenyl(4-BrC6H4),and 2-thienyl(C4H3S-2-yl).Mass attenuation coefficient(μm),effective atomic number(Zeff)and effective electron density(Nel)of compounds were determined experimentally and theoretically for at 8.040,8.910,13.40,14.96,17.48,19.61,22.16,24.94,32.19,36.38,44.48,50.38and 59.54keV photon energies by using an HPGe detector with a resolution of 182eV at 5.9keV.Radiation parameters of these compounds which can be anti-cancer drug candidate were given in the tables.The results show that phenyl ring behave like thiophene ring in terms of radiation absorption.It is thought that the results of study may drive allow the development of drug candidate new compounds in medical oncology.展开更多
Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two as...Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.展开更多
By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters cal...By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters called continuity and break. The continuity character means that vibration extent enlarges continuously while chatter frequency is almost changeless as the cutting depth extends downwards continuously. The break one is that chatter frequency moves rapidly downwards to a lower level while chatter remains after the cutting depth reach another given value. It is confirmed through an exciting test that the two chatter frequencies obtained in chatter test belong to the natural frequencies of workpiece system and cutting tool system respectively. From the viewpoints of chatter energy supplying and chatter mass effect, the. chatter should occur on one of the two final executive components in its natural frequency. On this basis, a new chatter model with two chatter active bodies is proposed. This new model can better explain the above phenomenon, and adapt to chatter monitoring and improvement of component structure well.展开更多
Background Radiation detection has been a main interest for researchers as all kind of produced particles in atomic and subatomic physics based on the measurement systems so-called detector.Detection efficiency is one...Background Radiation detection has been a main interest for researchers as all kind of produced particles in atomic and subatomic physics based on the measurement systems so-called detector.Detection efficiency is one of the main parameters in detection system besides many other different parameters of the detector.The detector in experimental physics is an instrument that converts radiation energy into an electrical signal,and this is achieved basically by either ionization or excitation.The choice for any type of a detector(gas-filled,scintillation or semiconductor)for any application depends upon the X-ray of gamma energy range of interest.A working model is therefore developed which is capable of describing the overall NaI(Tl)detection efficiency as a function of several known parameters.Purpose The attenuation coefficients for the bismuth borate glasses with different concentrations were measured using gamma spectroscopy technique.The numerical absolute efficiency calibration of a detector can be determined by In-Situ Object Calibration Software(ISOCS)and Monte Carlo Neutral Particle version 5(MCNP5)techniques which does not require any calibration standards or reference materials.Methods By using the ISOCS and MCNP5 methodologies,the full energy peak efficiency of a scintillator detector(3“X3”NaI(Tl))exposed to Co-60 and Cs-137 gamma ray sources with average accuracy range 0.126–1.224%for the used samples can be detected.The used materials are ternary and are located between the detector and the source to determine the attenuation coefficients for these samples by using the calculated full energy peak efficiencies of a detector.Results The average accuracy ranged from−1.808 to 1.960%for linear attenuation coefficient(μ),while it ranged from−1.999 to 1.888%and from−1.924 to 1.960%for half value layer(HVL)and mass linear attenuation coefficient(μm),respectively.Conclusion The calculated values of the absolute full energy peak efficiency have been used to determine the attenuation coefficients of materials with different concentrations and different densities.The results proved the validation of ISOCS and MCNP to determine the absolute full energy peak efficiency of the detector which can be used to determine the attenuation coefficients for the simulated samples and it is a good tool to be used when experimental methods are not available.展开更多
文摘The mass attenuation coefficients of the breasts,lungs,kidneys,pancreas,liver,eye lenses,thyroid,brain,ovary,heart,large intestines,blood,skin,spleen,muscle,and cortical bone were measured at different sources(i.e.,0.021,0.029,0.03,0.14,0.218,0.38,0.412,0.663,0.83,and 1.25 MeV)using various methods including the Monte Carlo N-particle transport code(MCNP),the geometry and tracking code(GEANT4),and theoretical approach described in this study.Mass attenuation coefficients were also compared with the values from the national institute of standards and technology(NIST-XCOM).The values obtained were similar to those obtained using NISTXCOM.Our results show that the theoretical method is quite convenient in comparison with GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.
文摘Measurements of K-shell mass attenuation coefficients are reported for the first time in Arsenic oxide (As<sub>2</sub>O<sub>3</sub>). Experiments are performed using Arsenic Oxide extended range HPGe detector. To achieve measurements at many small and regular energy intervals, secondary X-ray emission technique using “Seventeen Scatters” is employed. The results are in agreement with the proposed theoretical estimates. No evidence could, however be gained in favor of microscopic theories such as RRS and EXAFS, insofar as there are no energy points within a range of 100eV on either side of the K-edge.
文摘Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.
文摘The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use granite, and compares them with the lead because of its high blocking ability for this type of radiation. This paper concluded through linear and mass attenuation coefficients measurements that these coefficients decrease with increasing incident photons energy. Measurements also showed that the linear attenuation coefficients appropriate linearly with density while mass attenuation coefficients do not get affected.
文摘In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.
文摘In this study,we aimed to determine the radiation parameters of some potential bioactive compounds.1-Aryl-3-dibenzylamino-propane-1-on hydrochloride type Mannich bases were synthesized via classical conventional heating method.Aryl part was changed as phenyl(C6H5),4-methylphenyl(4-CH3C6H4),4-fluorophenyl(4-FC6H4),4-nitrophenyl(4-NO2C6H4),4-chlorophenyl(4-ClC6H4),4-bromophenyl(4-BrC6H4),and 2-thienyl(C4H3S-2-yl).Mass attenuation coefficient(μm),effective atomic number(Zeff)and effective electron density(Nel)of compounds were determined experimentally and theoretically for at 8.040,8.910,13.40,14.96,17.48,19.61,22.16,24.94,32.19,36.38,44.48,50.38and 59.54keV photon energies by using an HPGe detector with a resolution of 182eV at 5.9keV.Radiation parameters of these compounds which can be anti-cancer drug candidate were given in the tables.The results show that phenyl ring behave like thiophene ring in terms of radiation absorption.It is thought that the results of study may drive allow the development of drug candidate new compounds in medical oncology.
文摘Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.
基金National Natural Science Foundation of China(No, 50575232).
文摘By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters called continuity and break. The continuity character means that vibration extent enlarges continuously while chatter frequency is almost changeless as the cutting depth extends downwards continuously. The break one is that chatter frequency moves rapidly downwards to a lower level while chatter remains after the cutting depth reach another given value. It is confirmed through an exciting test that the two chatter frequencies obtained in chatter test belong to the natural frequencies of workpiece system and cutting tool system respectively. From the viewpoints of chatter energy supplying and chatter mass effect, the. chatter should occur on one of the two final executive components in its natural frequency. On this basis, a new chatter model with two chatter active bodies is proposed. This new model can better explain the above phenomenon, and adapt to chatter monitoring and improvement of component structure well.
文摘Background Radiation detection has been a main interest for researchers as all kind of produced particles in atomic and subatomic physics based on the measurement systems so-called detector.Detection efficiency is one of the main parameters in detection system besides many other different parameters of the detector.The detector in experimental physics is an instrument that converts radiation energy into an electrical signal,and this is achieved basically by either ionization or excitation.The choice for any type of a detector(gas-filled,scintillation or semiconductor)for any application depends upon the X-ray of gamma energy range of interest.A working model is therefore developed which is capable of describing the overall NaI(Tl)detection efficiency as a function of several known parameters.Purpose The attenuation coefficients for the bismuth borate glasses with different concentrations were measured using gamma spectroscopy technique.The numerical absolute efficiency calibration of a detector can be determined by In-Situ Object Calibration Software(ISOCS)and Monte Carlo Neutral Particle version 5(MCNP5)techniques which does not require any calibration standards or reference materials.Methods By using the ISOCS and MCNP5 methodologies,the full energy peak efficiency of a scintillator detector(3“X3”NaI(Tl))exposed to Co-60 and Cs-137 gamma ray sources with average accuracy range 0.126–1.224%for the used samples can be detected.The used materials are ternary and are located between the detector and the source to determine the attenuation coefficients for these samples by using the calculated full energy peak efficiencies of a detector.Results The average accuracy ranged from−1.808 to 1.960%for linear attenuation coefficient(μ),while it ranged from−1.999 to 1.888%and from−1.924 to 1.960%for half value layer(HVL)and mass linear attenuation coefficient(μm),respectively.Conclusion The calculated values of the absolute full energy peak efficiency have been used to determine the attenuation coefficients of materials with different concentrations and different densities.The results proved the validation of ISOCS and MCNP to determine the absolute full energy peak efficiency of the detector which can be used to determine the attenuation coefficients for the simulated samples and it is a good tool to be used when experimental methods are not available.