Structural model of C100H79O7NS coal organic mass was obtained within density functional theory in the localized orbital basis set using the B3LYP hybrid functional. The model was compared with the known experimental ...Structural model of C100H79O7NS coal organic mass was obtained within density functional theory in the localized orbital basis set using the B3LYP hybrid functional. The model was compared with the known experimental data for coal of different grades and its sorption properties were studied with respect to CH4, CO2 and H2O. It has been shown that macromolecule of coal organic mass has bulk structure with a pore inside it. Interaction between coal and CH4 molecules consists of typical physical adsorption with oligomer formation on the pore border, physical adsorption with elements of chemical adsorption was also observed between coal and H2O molecules. Interaction between coal and H2O molecules included both physical and chemical adsorbion.展开更多
Two novel transition metal phosphonate compounds, [Co(H2BDPP)(phen)]n 1 (BDPP = p-O3PCH2(C6H4)CH2PO3, phen = 1,10-phenanthroline) and [Pb3(BCP)2]n 2 (BCP = OOC(C6H4)CH2PO3), have been synthesized and str...Two novel transition metal phosphonate compounds, [Co(H2BDPP)(phen)]n 1 (BDPP = p-O3PCH2(C6H4)CH2PO3, phen = 1,10-phenanthroline) and [Pb3(BCP)2]n 2 (BCP = OOC(C6H4)CH2PO3), have been synthesized and structurally determined by X-ray single-crystal diffraction. Compound 1 crystallizes in the monoclinic system, space group C2/c with a = 21.169(4), b = 12.001(2), c = 7.6211(15)A, β = 98.03(3)°, V= 1917.2(6)A^3, C20H18N2O6P2Co, Mr = 505.22, Z = 8, De= 1.737 g/cm^3, p = 1.107 mm^-1, F(000) = 1020, the final R= 0.0450 and wR = 0.1306 for 2072 observed reflections (I 〉 2σ(I). Compound 2 crystallizes in the monoclinic system, space group C2/c with a = 4.7167(9), b = 18.753(2), c = 22.781(3)A, β = 91.07(3)°, V= 2014.7(14)A^, C8H6O5PPb1.5, Mr = 523.88, Z = 8, Dc = 3.454 g/cm^3, p = 25.222 mm^-1, F(000) = 1856, the final R = 0.0441 and wR = 0.1906 for 2259 observed reflections (I 〉 2σ(I). In compound 1, the 1D chain running along the c axis is bridged by four ligands (trans- HO3PCH2C6H4CH2PO3H) in four different directions to extend the structure into a three- dimensional network. In compound 2, the Pb(II) displays 4- and 5-coordination modes. There is a one-dimensional P-O-Pb band along the a axis formed by PO3 groups and Pb(II) cations. These bands are joined by μ2-O of -COO to yield two-dimensional inorganic P-O-Pb layers which are pillared by the OOCC6HaCH2PO3 ligands to form a three-dimensional network. Moreover, compound 2 displays a strong emission band attributed to the ligand-centered (LC) transition.展开更多
In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/...In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.展开更多
The Peierls structural transition in the TTT<sub>2</sub>I<sub>3</sub> (tetrathiotetracene-iodide) crystal, for different values of carrier concentration is studied in 3D approximation. A crysta...The Peierls structural transition in the TTT<sub>2</sub>I<sub>3</sub> (tetrathiotetracene-iodide) crystal, for different values of carrier concentration is studied in 3D approximation. A crystal physical model is applied that considers two of the most important hole-phonon interactions. The first interaction describes the deformation potential and the second one is of polaron type. In the presented physical model, the interaction of carriers with the structural defects is taken into account. This is crucial for the explanation of the transition. The renormalized phonon spectrum is calculated in the random phase approximation for different temperatures applying the method of Green functions. The renormalized phonon frequencies for different temperatures are presented in two cases. In the first case the interaction between TTT chains is neglected. In the second one, this interaction is taken into account. Computer simulations for the 3D physical model of the TTT<sub>2</sub>I<sub>3</sub> crystal are performed for different values of dimensionless Fermi momentum <em>k</em><sub>F</sub>, that is determined by variation of carrier concentration. It is shown that the transition is of Peierls type and strongly depends on iodine concentration. Finally, the Peierls critical temperature was determined.展开更多
Precessing ball solitons (PBS) in a ferromagnet during the first order phase transition is induced by a magnetic field directed along the axis of anisotropy, while the action of the periodic field perpendicular to the...Precessing ball solitons (PBS) in a ferromagnet during the first order phase transition is induced by a magnetic field directed along the axis of anisotropy, while the action of the periodic field perpendicular to the main magnetic field has been analyzed. Under these conditions, the characteristics of arising equilibrium PBS are uniquely determined by the frequency of the periodic field, but the solitons with other frequencies are impossible. For such structure, the entropy increase connected with dissipation is compensated by the decrease of the entropy due to the external periodic field. It is shown that the equilibrium PBS are essentially the “self-organizing systems” that can arise spotaneously in a metastable state of ferromagnet.展开更多
文摘Structural model of C100H79O7NS coal organic mass was obtained within density functional theory in the localized orbital basis set using the B3LYP hybrid functional. The model was compared with the known experimental data for coal of different grades and its sorption properties were studied with respect to CH4, CO2 and H2O. It has been shown that macromolecule of coal organic mass has bulk structure with a pore inside it. Interaction between coal and CH4 molecules consists of typical physical adsorption with oligomer formation on the pore border, physical adsorption with elements of chemical adsorption was also observed between coal and H2O molecules. Interaction between coal and H2O molecules included both physical and chemical adsorbion.
基金supported by the State Key Laboratory of Structural Chemistry, National Natural Science Foundation of China (20873021)the Young Talent Programmed of Fujian Province (No. 2006F3072)
文摘Two novel transition metal phosphonate compounds, [Co(H2BDPP)(phen)]n 1 (BDPP = p-O3PCH2(C6H4)CH2PO3, phen = 1,10-phenanthroline) and [Pb3(BCP)2]n 2 (BCP = OOC(C6H4)CH2PO3), have been synthesized and structurally determined by X-ray single-crystal diffraction. Compound 1 crystallizes in the monoclinic system, space group C2/c with a = 21.169(4), b = 12.001(2), c = 7.6211(15)A, β = 98.03(3)°, V= 1917.2(6)A^3, C20H18N2O6P2Co, Mr = 505.22, Z = 8, De= 1.737 g/cm^3, p = 1.107 mm^-1, F(000) = 1020, the final R= 0.0450 and wR = 0.1306 for 2072 observed reflections (I 〉 2σ(I). Compound 2 crystallizes in the monoclinic system, space group C2/c with a = 4.7167(9), b = 18.753(2), c = 22.781(3)A, β = 91.07(3)°, V= 2014.7(14)A^, C8H6O5PPb1.5, Mr = 523.88, Z = 8, Dc = 3.454 g/cm^3, p = 25.222 mm^-1, F(000) = 1856, the final R = 0.0441 and wR = 0.1906 for 2259 observed reflections (I 〉 2σ(I). In compound 1, the 1D chain running along the c axis is bridged by four ligands (trans- HO3PCH2C6H4CH2PO3H) in four different directions to extend the structure into a three- dimensional network. In compound 2, the Pb(II) displays 4- and 5-coordination modes. There is a one-dimensional P-O-Pb band along the a axis formed by PO3 groups and Pb(II) cations. These bands are joined by μ2-O of -COO to yield two-dimensional inorganic P-O-Pb layers which are pillared by the OOCC6HaCH2PO3 ligands to form a three-dimensional network. Moreover, compound 2 displays a strong emission band attributed to the ligand-centered (LC) transition.
基金National Natural Science Foundation of China(4 9672 13 1)
文摘In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.
文摘The Peierls structural transition in the TTT<sub>2</sub>I<sub>3</sub> (tetrathiotetracene-iodide) crystal, for different values of carrier concentration is studied in 3D approximation. A crystal physical model is applied that considers two of the most important hole-phonon interactions. The first interaction describes the deformation potential and the second one is of polaron type. In the presented physical model, the interaction of carriers with the structural defects is taken into account. This is crucial for the explanation of the transition. The renormalized phonon spectrum is calculated in the random phase approximation for different temperatures applying the method of Green functions. The renormalized phonon frequencies for different temperatures are presented in two cases. In the first case the interaction between TTT chains is neglected. In the second one, this interaction is taken into account. Computer simulations for the 3D physical model of the TTT<sub>2</sub>I<sub>3</sub> crystal are performed for different values of dimensionless Fermi momentum <em>k</em><sub>F</sub>, that is determined by variation of carrier concentration. It is shown that the transition is of Peierls type and strongly depends on iodine concentration. Finally, the Peierls critical temperature was determined.
文摘Precessing ball solitons (PBS) in a ferromagnet during the first order phase transition is induced by a magnetic field directed along the axis of anisotropy, while the action of the periodic field perpendicular to the main magnetic field has been analyzed. Under these conditions, the characteristics of arising equilibrium PBS are uniquely determined by the frequency of the periodic field, but the solitons with other frequencies are impossible. For such structure, the entropy increase connected with dissipation is compensated by the decrease of the entropy due to the external periodic field. It is shown that the equilibrium PBS are essentially the “self-organizing systems” that can arise spotaneously in a metastable state of ferromagnet.