As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the d...Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.展开更多
In order to develop a anchoring operation simulation system and improve safety during anchoring operations,a relatively accurate mathematical model of anchoring operations needs to be established.In this paper,the str...In order to develop a anchoring operation simulation system and improve safety during anchoring operations,a relatively accurate mathematical model of anchoring operations needs to be established.In this paper,the stress condition of anchor chain under environmental and subsea geological conditions is further studied and the stress condition of anchor chain is analyzed based on the previous research.In this paper,a quasi-static model based on catenary method is used as the basis of dynamic analysis,and the dynamic model of anchor chain is established based on the concentrated mass method,which fully considers the influence of anchor chain weight,hydrodynamic force,ocean current and interaction with the seabed.The fourth-order Runge Kutta method was used to solve the model numerically,and a calculation procedure was developed.The accuracy of the model was verified by comparing the calculated results with the experimental results,indicating that the constructed anchor chain dynamics model has a high accuracy.展开更多
Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.T...Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation.展开更多
For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
Accurate assessment of herbage mass (HM) in pasture is a key to budgeting forage in grazing systems worldwide. Different non-destructive techniques to measuring pasture yield are commented. The methods compared incl...Accurate assessment of herbage mass (HM) in pasture is a key to budgeting forage in grazing systems worldwide. Different non-destructive techniques to measuring pasture yield are commented. The methods compared include visual estimations, manual and electronic pasture meters and remote sensing. All methods are associated with a moderate to high error, showing that some indirect methods of yield estimation are appropriate under most appropriate because many factors as climate variations, soil certain conditions. In general terms, no method was found as the characteristics, plant phenology, pasture management and species composition must be taken into account to make local calibrations from a general model. Best results were found modifying general methods under local calibrations and under local conditions. In order to give farmers the best method to manage adequately their own grazing systems, researchers must select the most suitable technique considering the scale of operation, the desired accuracy and the resources available.展开更多
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
Microseismic(MS)event locations are vital aspect of MS monitoring technology used to delineate the damage zone inside the surrounding rock mass.However,complex geological conditions can impose significantly adverse ef...Microseismic(MS)event locations are vital aspect of MS monitoring technology used to delineate the damage zone inside the surrounding rock mass.However,complex geological conditions can impose significantly adverse effects on the final location results.To achieve a high-accuracy location in a complex cavern-containing structure,this study develops an MS location method using the fast marching method(FMM)with a second-order difference approach(FMM2).Based on the established velocity model with three-dimensional(3D)discrete grids,the realization of the MS location can be achieved by searching the minimum residual between the theoretical and actual first arrival times.Moreover,based on the calculation results of FMM2,the propagation paths from the MS sources to MS sensors can be obtained using the linear interpolation approach and the Runge–Kutta method.These methods were validated through a series of numerical experiments.In addition,our proposed method was applied to locate the recorded blasting and MS events that occurred during the excavation period of the underground caverns at the Houziyan hydropower station.The location results of the blasting activities show that our method can effectively reduce the location error compared with the results based on the uniform velocity model.Furthermore,the obtained MS location was verified through the occurrence of shotcrete fractures and spalling,and the monitoring results of the in-situ multipoint extensometer.Our proposed method can offer a more accurate rock fracture location and facilitate the delineation of damage zones inside the surrounding rock mass.展开更多
An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primar...An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.展开更多
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid...One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.展开更多
Objective:To develop a rapid,cost effective RT-PCR method for the mass scale diagnosis of such diseases at the vireraia stage to find out the actual disease burden in that area.Methods:For this purpose,cases with the ...Objective:To develop a rapid,cost effective RT-PCR method for the mass scale diagnosis of such diseases at the vireraia stage to find out the actual disease burden in that area.Methods:For this purpose,cases with the history of only short febrile illness were considered.Thus 157 samples with the history of dengue/chikungunya like illness and only 58 samples with a history of acute encephalitis syndrome(AES)were selected.Results:Out of 157 samples,42 and 74 were detected as dengue and chikungunya,respectively and out of 58 AES cases only 23 could be detected as Japanese encephalitis by this RT-PCR method.Conclusions:This cost effective RT-PCR method can detect the total positive cases that remain undetected by EL1SA method.Moreover,this method is capable to detect the viral RNA from patients'sera even after the appearance of IgM antibody at one fifth costs as compared with the other commercially available kits.展开更多
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversi...A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.展开更多
In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples...In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.展开更多
In this study,we developed a simple screening procedure for the determination of 18 anthelmintics(including benzimidazoles,macrocyclic lactones,salicylanilides,substituted phenols,tetrahydropyrimidines,and imidazothia...In this study,we developed a simple screening procedure for the determination of 18 anthelmintics(including benzimidazoles,macrocyclic lactones,salicylanilides,substituted phenols,tetrahydropyrimidines,and imidazothiazoles)in five animal-derived food matrices(chicken muscle,pork,beef,milk,and egg)using liquid chromatography-tandem mass spectrometry.Analytes were extracted using acetonitrile/1% acetic acid(milk and egg)and acetonitrile/1% acetic acid with 0.5 mL of distilled water(chicken muscle,pork,and beef),and purified using saturated n-hexane/acetonitrile.A reversed-phase analytical column and a mobile phase consisting of(A)10 mM ammonium formate in distilled water and(B)methanol were used to achieve optimal chromatographic separation.Matrix-matched standard calibration curves(R^(2)≥0.9752)were obtained for concentration equivalent to ×1/2,×1,×2,×3,×4,and×5 fold the maximum residue limit(MRL)stipulated by the Korean Ministry of Food and Drug Safety.Recoveries of 61.2e118.4%,with relative standard deviations(RSDs)of ≤19.9%(intraday and interday),were obtained for each sample at three spiking concentrations(×1/2,×1,and ×2 the MRL values).Limits of detection,limits of quantification,and matrix effects were 0.02e5.5 mg/kg,0.06e10 mg/kg,and -98.8 to 13.9%(at 20 μg/kg),respectively.In five samples of each food matrix(chicken muscle,pork,beef,milk,and egg)purchased from large retailers in Seoul that were tested,none of the target analytes were detected.It has therefore been shown that this protocol is adaptable,accurate,and precise for the quantification of anthelmintic residues in foods of animal origin.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an importan...Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
基金financial support by the National Natural Science Foundation of China(Grant Nos.52008152,U1965204,52061160367,U2067203 and 52008153)Natural Science Foundation of Hebei Province of China(Grant No.E2021202087)Hebei Department of Human Resource(Grant No.E2020050015)。
文摘Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.
基金supported by the National Natural Science Foundation of China(Grant No.52071200)the Science and Technology Commission of Shanghai Munici-pality.(Grant No.23010501900)。
文摘In order to develop a anchoring operation simulation system and improve safety during anchoring operations,a relatively accurate mathematical model of anchoring operations needs to be established.In this paper,the stress condition of anchor chain under environmental and subsea geological conditions is further studied and the stress condition of anchor chain is analyzed based on the previous research.In this paper,a quasi-static model based on catenary method is used as the basis of dynamic analysis,and the dynamic model of anchor chain is established based on the concentrated mass method,which fully considers the influence of anchor chain weight,hydrodynamic force,ocean current and interaction with the seabed.The fourth-order Runge Kutta method was used to solve the model numerically,and a calculation procedure was developed.The accuracy of the model was verified by comparing the calculated results with the experimental results,indicating that the constructed anchor chain dynamics model has a high accuracy.
文摘Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation.
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
文摘Accurate assessment of herbage mass (HM) in pasture is a key to budgeting forage in grazing systems worldwide. Different non-destructive techniques to measuring pasture yield are commented. The methods compared include visual estimations, manual and electronic pasture meters and remote sensing. All methods are associated with a moderate to high error, showing that some indirect methods of yield estimation are appropriate under most appropriate because many factors as climate variations, soil certain conditions. In general terms, no method was found as the characteristics, plant phenology, pasture management and species composition must be taken into account to make local calibrations from a general model. Best results were found modifying general methods under local calibrations and under local conditions. In order to give farmers the best method to manage adequately their own grazing systems, researchers must select the most suitable technique considering the scale of operation, the desired accuracy and the resources available.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.
基金the Key Program of National Natural Science Foundation of China(52039007)for providing financial support.
文摘Microseismic(MS)event locations are vital aspect of MS monitoring technology used to delineate the damage zone inside the surrounding rock mass.However,complex geological conditions can impose significantly adverse effects on the final location results.To achieve a high-accuracy location in a complex cavern-containing structure,this study develops an MS location method using the fast marching method(FMM)with a second-order difference approach(FMM2).Based on the established velocity model with three-dimensional(3D)discrete grids,the realization of the MS location can be achieved by searching the minimum residual between the theoretical and actual first arrival times.Moreover,based on the calculation results of FMM2,the propagation paths from the MS sources to MS sensors can be obtained using the linear interpolation approach and the Runge–Kutta method.These methods were validated through a series of numerical experiments.In addition,our proposed method was applied to locate the recorded blasting and MS events that occurred during the excavation period of the underground caverns at the Houziyan hydropower station.The location results of the blasting activities show that our method can effectively reduce the location error compared with the results based on the uniform velocity model.Furthermore,the obtained MS location was verified through the occurrence of shotcrete fractures and spalling,and the monitoring results of the in-situ multipoint extensometer.Our proposed method can offer a more accurate rock fracture location and facilitate the delineation of damage zones inside the surrounding rock mass.
文摘An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.
文摘One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.
基金supported by the Department of Science and Technology,Goverment of West Bengal.India[grant No.705(Sanc.)ST/P/S&T/9G-27/2007]
文摘Objective:To develop a rapid,cost effective RT-PCR method for the mass scale diagnosis of such diseases at the vireraia stage to find out the actual disease burden in that area.Methods:For this purpose,cases with the history of only short febrile illness were considered.Thus 157 samples with the history of dengue/chikungunya like illness and only 58 samples with a history of acute encephalitis syndrome(AES)were selected.Results:Out of 157 samples,42 and 74 were detected as dengue and chikungunya,respectively and out of 58 AES cases only 23 could be detected as Japanese encephalitis by this RT-PCR method.Conclusions:This cost effective RT-PCR method can detect the total positive cases that remain undetected by EL1SA method.Moreover,this method is capable to detect the viral RNA from patients'sera even after the appearance of IgM antibody at one fifth costs as compared with the other commercially available kits.
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金Supported by:Joint Research Fund for Earthquake Science,launched by the National Natural Science Foundation of China and the China Earthquake Administration under Grant No.U2039208。
文摘A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.
基金Supported by the Natural Basic Research Program of China(No.2005CB422207)the Fund of Eco-enviromental Impacts and Protection in Devoloping and Utilizing of Oil-shale Resources(No.OSR-01-06)
文摘In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.
基金supported by a grant(18162MFDS523)from the Ministry of Food and Drug Safety Administration in 2019.
文摘In this study,we developed a simple screening procedure for the determination of 18 anthelmintics(including benzimidazoles,macrocyclic lactones,salicylanilides,substituted phenols,tetrahydropyrimidines,and imidazothiazoles)in five animal-derived food matrices(chicken muscle,pork,beef,milk,and egg)using liquid chromatography-tandem mass spectrometry.Analytes were extracted using acetonitrile/1% acetic acid(milk and egg)and acetonitrile/1% acetic acid with 0.5 mL of distilled water(chicken muscle,pork,and beef),and purified using saturated n-hexane/acetonitrile.A reversed-phase analytical column and a mobile phase consisting of(A)10 mM ammonium formate in distilled water and(B)methanol were used to achieve optimal chromatographic separation.Matrix-matched standard calibration curves(R^(2)≥0.9752)were obtained for concentration equivalent to ×1/2,×1,×2,×3,×4,and×5 fold the maximum residue limit(MRL)stipulated by the Korean Ministry of Food and Drug Safety.Recoveries of 61.2e118.4%,with relative standard deviations(RSDs)of ≤19.9%(intraday and interday),were obtained for each sample at three spiking concentrations(×1/2,×1,and ×2 the MRL values).Limits of detection,limits of quantification,and matrix effects were 0.02e5.5 mg/kg,0.06e10 mg/kg,and -98.8 to 13.9%(at 20 μg/kg),respectively.In five samples of each food matrix(chicken muscle,pork,beef,milk,and egg)purchased from large retailers in Seoul that were tested,none of the target analytes were detected.It has therefore been shown that this protocol is adaptable,accurate,and precise for the quantification of anthelmintic residues in foods of animal origin.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
文摘Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.