The mass extinction at the end-Triassic is one of the five biggest in the Phanerozoic. However,it is the least well understood among these five events, and only till last decade it became a great academic interesting ...The mass extinction at the end-Triassic is one of the five biggest in the Phanerozoic. However,it is the least well understood among these five events, and only till last decade it became a great academic interesting subject to geologists. The evidences for this event come obviously from bivalves, brachiopods, ammonites, corals, radiolaria, ostracods and foraminifera of marine habitats, and plants and tetrapods of terrestrial realm. By contrast, for some of other groups, such as marine gastropods and marine vertebrates, no mass extinction has been recog-nized yet. The extinction event is strongly marked at specific level but shown a complicated situa-tion at generic and family levels. Dramatic changing of the environment, such as the temperature raise due to the greenhouse effect, the marine anoxic habitats caused by a sudden transgression after the regression at the end of Triassic, has been claimed to be the main cause of the extinction. Many hypotheses have been suggested to demonstrate the mechanisms of the environment changing, among which two popular ones are the bolide impact and volcanic eruption. The Triassic-Jurassic (Tr-J) boundary mass extinction event is still poorly understood because no enough data have been obtained from the Tr-J boundary successional sections of both marine and terrestrial sediments, and most of these studies were regionally restricted. The basic aspects of the event and its associated environmental conditions remain poorly characterized and the causal mechanism or mechanisms are equivocal. Some authors even doubt its occurrence. China has many successionally developed terrestrial and marine Tr-J sections. Detailed studies of these sections may be important and significant for well understanding of the event.展开更多
A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content...A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content in the melt.The overall mass transfer coefficient of Al was determined and it was found that the evaporation rate of Al increased with increasing temperatures.The apparent activation energy of Al evaporation at 1673-1843 K was 171.5 kJ mol-1.The value of mass transfer coefficient of Al in the liquid phase was estimated to be 3.77 × 10-6,7.41×10-6,and 9.40 × 10-6m s-1at 1673,1753,and 1843 K,respectively.Meanwhile,rate determining steps were discussed and it was concluded that the evaporation rate of Al is mainly controlled by liquid phase mass transfer.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.40372021)IGCP(458)the Special Fund of Research Institute of Petroleum Exploration and Development,PetroChina.
文摘The mass extinction at the end-Triassic is one of the five biggest in the Phanerozoic. However,it is the least well understood among these five events, and only till last decade it became a great academic interesting subject to geologists. The evidences for this event come obviously from bivalves, brachiopods, ammonites, corals, radiolaria, ostracods and foraminifera of marine habitats, and plants and tetrapods of terrestrial realm. By contrast, for some of other groups, such as marine gastropods and marine vertebrates, no mass extinction has been recog-nized yet. The extinction event is strongly marked at specific level but shown a complicated situa-tion at generic and family levels. Dramatic changing of the environment, such as the temperature raise due to the greenhouse effect, the marine anoxic habitats caused by a sudden transgression after the regression at the end of Triassic, has been claimed to be the main cause of the extinction. Many hypotheses have been suggested to demonstrate the mechanisms of the environment changing, among which two popular ones are the bolide impact and volcanic eruption. The Triassic-Jurassic (Tr-J) boundary mass extinction event is still poorly understood because no enough data have been obtained from the Tr-J boundary successional sections of both marine and terrestrial sediments, and most of these studies were regionally restricted. The basic aspects of the event and its associated environmental conditions remain poorly characterized and the causal mechanism or mechanisms are equivocal. Some authors even doubt its occurrence. China has many successionally developed terrestrial and marine Tr-J sections. Detailed studies of these sections may be important and significant for well understanding of the event.
文摘A research on kinetics of Al evaporation from liquid U—Al alloys was made in a vacuum induction melting(VIM) furnace at 1673—1843 K.The evaporation rate of Al was found to be first order with respect to Al content in the melt.The overall mass transfer coefficient of Al was determined and it was found that the evaporation rate of Al increased with increasing temperatures.The apparent activation energy of Al evaporation at 1673-1843 K was 171.5 kJ mol-1.The value of mass transfer coefficient of Al in the liquid phase was estimated to be 3.77 × 10-6,7.41×10-6,and 9.40 × 10-6m s-1at 1673,1753,and 1843 K,respectively.Meanwhile,rate determining steps were discussed and it was concluded that the evaporation rate of Al is mainly controlled by liquid phase mass transfer.