Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such ...This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a...In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment o...The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment of inertia of the system, the angular momentum of the gyros and the external disturbances are not exactly known. With the help of feedback linearization and recursive Lyaptmov design method, an adaptive nonlinear controller is designed to deal with the unknown items. Performance of the proposed controller is verified by simulation.展开更多
The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in t...The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.展开更多
The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven...The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.展开更多
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a...Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.展开更多
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p...The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was anal...A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.展开更多
The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operat...The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi-Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotieal stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finaily, an illustrated example is also given to show the effectiveness of the obtained results.展开更多
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
基金supported by the Key Project of Chinese Ministry of Education(108037)the National Natural Science Foundation of China(10402008 and 50535010)
文摘This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023,60871025,and 10862001)the Natural Science Foundation of Guangdong Province,China (Grant Nos. S2011010001018 and 8151009001000060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003)
文摘In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.
基金National Natural Science Foundation of China(60674102, 60475027)Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China
文摘The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment of inertia of the system, the angular momentum of the gyros and the external disturbances are not exactly known. With the help of feedback linearization and recursive Lyaptmov design method, an adaptive nonlinear controller is designed to deal with the unknown items. Performance of the proposed controller is verified by simulation.
基金Project supported by the National Natural Science Foundation of China (Grant No 70571017)
文摘The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.
基金supported by the National Natural Science Foundation of China (Grant No 60604007)
文摘The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.
基金the National Natural Science Foundation of China (60374032).
文摘Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.
基金Project(50375139) supported by the National Natural Science Foundation of ChinaProject(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
文摘The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
基金Sponsored by the NSFC General Project (51177135)the Key Project of Natural Science Foundation of Shaanxi Province (2011GZ013)
文摘A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.
基金the National Natural Science Foundation of China under Grant No 60604007.
文摘The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi-Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotieal stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finaily, an illustrated example is also given to show the effectiveness of the obtained results.
基金supported by National Natural Science Foundation of China(61075065,60774045,61473314,U1134108)Ph.D.Programs Foundation of Ministry of Education of China(20110162110041)Science Foundation of Innovation Research Groups of National Natural Science Foundation of China(61321003)