期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparative Study of the Thermal and Mechanical Properties of Foamed Concrete with Local Materials
1
作者 Adelaïde Lareba Ouédraogo Sayouba Kabré +8 位作者 Etienne Malbila Abdoulaye Compaoré Ramatou Saré Paul Ilboudo Sié Kam Bruno Korgo Dieudonné Joseph Bathiebo Florent P. Kieno Philippe Blanchard 《World Journal of Engineering and Technology》 2022年第3期550-564,共15页
Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal dis... Living in a habitat with comfort is requested by all. Cinder block bricks have poor thermal properties, leading people to use fan heaters and air conditioners to regain comfort. To overcome this problem of thermal discomfort in buildings, we used lightweight concrete such as foamed concrete which is a material that has improved thermal properties for thermal comfort. In addition, this material was compared with local materials used for the construction of buildings such as BTC, adobe and BLT mixed with binders. The results showed that foamed concrete is a material that has good thermal and mechanical properties compared to local materials mixed with binders. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m<sup>3</sup>. It has a thermal resistance of 0.4 m<sup>2</sup>·K/W for a thickness of 20 cm. The foamed concrete having acceptable thermo-mechanical properties was that having a density of 930 kg/m3</sup>. It has a thermal resistance of 0.4 m2</sup>·K/W for a thickness of 20 cm. For sunshine on a daily cycle equal to 12 hours, the characteristic thickness achieved by this material is 7.29 cm. It also has a shallow depth of heat diffusion having a lower thickness than other materials. This shows that foamed concrete is a promising material for the construction of buildings. 展开更多
关键词 Foamed Concrete Thermo-Mechanical Properties COMPARISON Local materi-als
下载PDF
Covalent and Non-covalent Chemical Modification of Multi-walled Carbon Nanotubes with Tetra-(4-hydroxylphenyl)porphyrin and Its Complexes
2
作者 Zhao, Hongbin Wang, Hongke +3 位作者 Chang, Hui Qiu, Shijun Deng, Biyun Liao, Junxu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第9期1901-1905,共5页
Multi-walled carbon nanotubes (MWNTs) were covalently and non-covalently functionalized with tetra- (4-hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic s... Multi-walled carbon nanotubes (MWNTs) were covalently and non-covalently functionalized with tetra- (4-hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic solution. The morphology of the nanohybrids was observed with transmission electron microscopy. The structure of the product was characterized by FT-IR, UV-Vis spectrophotometer, fluorescence spectroscopy and thermogravim- etric analysis. The photo-induced electron-transfer process of the nanohybrids in organic solution was also revealed. 展开更多
关键词 PORPHYRIN multi-walled carbon nanotubes (MWNTs) composite modification NANOSTRUCTURE materi-als science
原文传递
A THREE-DIMENSIONAL ELASTICITY SOLUTION FOR TWO-DIRECTIONAL FGM ANNULAR PLATES WITH NON-UNIFORM ELASTIC FOUNDATIONS SUBJECTED TO NORMAL AND SHEAR TRACTIONS
3
作者 A.Behravan Rad M.Shariyat 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第6期671-690,共20页
In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-... In the present paper, bending and stress analyses of two-directional functionally graded (FG) annular plates resting on non-uniform two-parameter Winkler-Pasternak founda- tions and subjected to normal and in-plane-shear tractions is investigated using the exact three- dimensional theory of elasticity. Neither the in-plane shear loading nor the influence of the two- directional material heterogeneity has been investigated by the researchers before. The solution is obtained by employing the state space and differential quadrature methods. The material proper- ties are assumed to vary in both transverse and radial directions. Three different types of variations of the stiffness of the foundation are considered in the radial direction: linear, parabolic, and sinu- soidal. The convergence analysis and the comparative studies demonstrate the high accuracy and high convergence rate of the present approach. A parametric study consisting of evaluating effects of different parameters (e.g., exponents of the material properties laws, the thickness to radius ratio, trends of variations of the foundation stiffness, and different edge conditions) is carried out. The results are reported for the first time and are discussed in detail. 展开更多
关键词 three-dimensional theory of elasticity two-directionM functionally graded materi- als annular and circular plates elastic foundation differential quadrature in-plane shear
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部