Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from ...Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from source, production and processing to enhance use efficiency of raw materials and guarantee raw material safety.展开更多
[ Objective ] The paper was to study the effect of controlled atmosphere stress of carbon dioxide ( CO2 ) on Superoxide dismutase (SOD) activity of in- sect, so as to analyze the biological mechanism of the action...[ Objective ] The paper was to study the effect of controlled atmosphere stress of carbon dioxide ( CO2 ) on Superoxide dismutase (SOD) activity of in- sect, so as to analyze the biological mechanism of the action of controlled atmosphere stress on insect. [ Method] Using nitrotetrazolium blue chloride (NBT) light reduction method, SOD activity of drugstore beetle ( Stegobium panlceum ), cigarette beetle ( Lasioderma serricorne) and coffee bean beetle (Araecerus fasciculatus) was studied, and the stress response of the enzyme under controlled atmosphere stress of CO2 was analyzed. [ Result ] SOD activity of drugstore beetle, cigarette beetle and coffee bean beetle exposed to controlled atmosphere stress of high concentrations of CO2 for 3 and 6 h had certain degree of increase, and the activity sig- nificantly increased from 2.011±0.954,2.664±0.218 and 1.458±0.718 to 3. 135±0. 105,3.050±0.673 and 2.975±0.229 U/(per pest · 30 min) after treat- ment for 6 h. [ Conclusion] Controlled atmosphere stress of high concentrations of CO2 had certain activation effect on SOD activity of storage pest in Chinese me- dicinal material within the context of sub-lethal events. The results could enrich the insecticidal mechanism of controlled atmosphere and theoretical system of analy- sis on insect resistance to controlled atmosphere.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developm...Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are pre- sented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.展开更多
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP...Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.展开更多
Gypsum is a traditional building material. To improve the humidity-controlling properties of gypsum, we prepared a new type of humidity-controlling composite using the sol-gel method. Methods to determine the maximum ...Gypsum is a traditional building material. To improve the humidity-controlling properties of gypsum, we prepared a new type of humidity-controlling composite using the sol-gel method. Methods to determine the maximum equilibrium moisture content and speed of adsorption/desorption were subsequently applied to analyze the performance of the samples. The appearance and structural properties of the samples were characterized by scanning electronic microscopy (SEM). The experimental results show that the humidity-controlling gel with added LiCl exhibits high moisture storage and that the equilibrium maximum moisture content is 5.652 g/g at a 75.29% relative humidity (RH). A mass ratio of LiCl/sol = 0.15 is demonstrated to be appropriate for the preparation of the new humidity-controlling composites. A coarse network with tiny pores is observed on the surface of the new humidity-controlling composites, and this pore network provides sufficient space for moisture adsorption.展开更多
This research evaluated the use of sewage sludge and refuse incineration bottom ash to replace calcium sulfoaluminate cement (CSA) in making controlled low-strength material (CLSM). Various properties of CLSM mixt...This research evaluated the use of sewage sludge and refuse incineration bottom ash to replace calcium sulfoaluminate cement (CSA) in making controlled low-strength material (CLSM). Various properties of CLSM mixtures were characterized in terms of unconfined compressive strength, microstructure and leachability. It was found that the strength of tested CLSM mixtures ranged from 3.6 to 9.0 MPa, over the upper excavatable limit of 2.1 MPa. The micro-structural analysis revealed that sewage sludge and bottom ash were crystallochemically in- corporated within CLSM system_s by forming the needle-like ettringite (C3A'3CS'_H32) with exiguous tu.bers via the typical Pozzolanic Reaction, leading to a dense and low-porosity microst;'ucture. Furthermore,-the toxicity characteristic leaching procedure evidenced that the cumulative leachable metals in the leachate were much below the regulatory thresholds. The potential for us!ng sewage sludge and bottom ash!n CLSM makin.g was thus confirmed.展开更多
In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-i...In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology.展开更多
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r...With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.展开更多
Triboelectric nanogenerators(TENG),renowned for their remarkable capability to harness weak mechanical energy from the environment,have gained considerable attention owing to their cost-effectiveness,high output,and a...Triboelectric nanogenerators(TENG),renowned for their remarkable capability to harness weak mechanical energy from the environment,have gained considerable attention owing to their cost-effectiveness,high output,and adaptability.This review provides a unique perspective by conducting a comprehensive and in-depth analysis of magnetically assisted TENGs that encompass structures,materials,and self-powered sensing systems.We systematically summarize the diverse functions of the magnetic assistance for TENGs,including system stiffness,components of the hybrid electromagnetic-triboelectric generator,transmission,and interaction forces.In the material domain,we review the incorporation of magnetic nano-composites materials,along with ferrofluid-based TENG and microstructure verification,which have also been summarized based on existing research.Furthermore,we delve into the research progress on physical quantity sensing and human-machine interface in magnetic-assisted TENGs.Our analysis highlights that magnetic assistance extends beyond the repulsive and suction forces under a magnetic field,thereby playing multifaceted roles in improving the output performance and environmental adaptability of the TENGs.Finally,we present the prevailing challenges and offer insights into the future trajectory of the magnetic-assisted TENGs development.展开更多
Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction wa...Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.展开更多
An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manip...An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.展开更多
A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM...A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.展开更多
Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the p...Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.展开更多
The paper discusses how the inventory control of army equipment material runs sytematically under the two-level maintenance system,and establishes the inventory control model based on system dynamics.On the basis of m...The paper discusses how the inventory control of army equipment material runs sytematically under the two-level maintenance system,and establishes the inventory control model based on system dynamics.On the basis of modeling and simulation,the influence of different inventory upper limit on the whole system is studied,and the optimal inventory control mechanism under the model condition is foud.In addition,through the simulation of two replenishment strategies(s,S) and(T,s,S),the advantages and disadvantages and feasibility of each replenishment strategy are analyzed.展开更多
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ...The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.展开更多
The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservat...The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.展开更多
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
文摘Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from source, production and processing to enhance use efficiency of raw materials and guarantee raw material safety.
基金Supported by Project of Guizhou Provincial Modernization of Chinese Medicine Material Project(QKHYZ[2011]5049Organization Department of CPCGuizhou Committee(TZJF-2009-02)Promotion Project of Key Scientific and Technological Achievements of Guiyang City([2010]1-T-4)~~
文摘[ Objective ] The paper was to study the effect of controlled atmosphere stress of carbon dioxide ( CO2 ) on Superoxide dismutase (SOD) activity of in- sect, so as to analyze the biological mechanism of the action of controlled atmosphere stress on insect. [ Method] Using nitrotetrazolium blue chloride (NBT) light reduction method, SOD activity of drugstore beetle ( Stegobium panlceum ), cigarette beetle ( Lasioderma serricorne) and coffee bean beetle (Araecerus fasciculatus) was studied, and the stress response of the enzyme under controlled atmosphere stress of CO2 was analyzed. [ Result ] SOD activity of drugstore beetle, cigarette beetle and coffee bean beetle exposed to controlled atmosphere stress of high concentrations of CO2 for 3 and 6 h had certain degree of increase, and the activity sig- nificantly increased from 2.011±0.954,2.664±0.218 and 1.458±0.718 to 3. 135±0. 105,3.050±0.673 and 2.975±0.229 U/(per pest · 30 min) after treat- ment for 6 h. [ Conclusion] Controlled atmosphere stress of high concentrations of CO2 had certain activation effect on SOD activity of storage pest in Chinese me- dicinal material within the context of sub-lethal events. The results could enrich the insecticidal mechanism of controlled atmosphere and theoretical system of analy- sis on insect resistance to controlled atmosphere.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金supported by the Air Force Office of Scientific Research under Grant AF 9550-15-1-0061 with Program Manager Dr. Byung-Lip (Les) Lee
文摘Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are pre- sented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.
基金financially supported by the National Natural Science Foundation of China(51172176)
文摘Gypsum is a traditional building material. To improve the humidity-controlling properties of gypsum, we prepared a new type of humidity-controlling composite using the sol-gel method. Methods to determine the maximum equilibrium moisture content and speed of adsorption/desorption were subsequently applied to analyze the performance of the samples. The appearance and structural properties of the samples were characterized by scanning electronic microscopy (SEM). The experimental results show that the humidity-controlling gel with added LiCl exhibits high moisture storage and that the equilibrium maximum moisture content is 5.652 g/g at a 75.29% relative humidity (RH). A mass ratio of LiCl/sol = 0.15 is demonstrated to be appropriate for the preparation of the new humidity-controlling composites. A coarse network with tiny pores is observed on the surface of the new humidity-controlling composites, and this pore network provides sufficient space for moisture adsorption.
基金Supported by the Science and Technology Commission of Shanghai Municipality (08 DZ 1202802,09 DZ 1204105,09 DZ2251700)the National Natural Science Foundation of China (51008322)
文摘This research evaluated the use of sewage sludge and refuse incineration bottom ash to replace calcium sulfoaluminate cement (CSA) in making controlled low-strength material (CLSM). Various properties of CLSM mixtures were characterized in terms of unconfined compressive strength, microstructure and leachability. It was found that the strength of tested CLSM mixtures ranged from 3.6 to 9.0 MPa, over the upper excavatable limit of 2.1 MPa. The micro-structural analysis revealed that sewage sludge and bottom ash were crystallochemically in- corporated within CLSM system_s by forming the needle-like ettringite (C3A'3CS'_H32) with exiguous tu.bers via the typical Pozzolanic Reaction, leading to a dense and low-porosity microst;'ucture. Furthermore,-the toxicity characteristic leaching procedure evidenced that the cumulative leachable metals in the leachate were much below the regulatory thresholds. The potential for us!ng sewage sludge and bottom ash!n CLSM makin.g was thus confirmed.
基金Project(2011FZ056)supported by the Applied Basic Research Plan Program of Yunnan Province,China
文摘In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51991361)the foundation of China University of Petroleum(Beijing)(Grant No.2462021YXZZ002).
文摘With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs.
基金supported by the General Program of the National Natural Science Foundation of China(NSFC,No.52075061)the Key Program of the National Natural Science Foundation of China(NSFC,No.U22B2089)the Science Fund for Distinguished Young Scholars of Chongqing(No.CSTB2022 NSCQ-JQX0006).
文摘Triboelectric nanogenerators(TENG),renowned for their remarkable capability to harness weak mechanical energy from the environment,have gained considerable attention owing to their cost-effectiveness,high output,and adaptability.This review provides a unique perspective by conducting a comprehensive and in-depth analysis of magnetically assisted TENGs that encompass structures,materials,and self-powered sensing systems.We systematically summarize the diverse functions of the magnetic assistance for TENGs,including system stiffness,components of the hybrid electromagnetic-triboelectric generator,transmission,and interaction forces.In the material domain,we review the incorporation of magnetic nano-composites materials,along with ferrofluid-based TENG and microstructure verification,which have also been summarized based on existing research.Furthermore,we delve into the research progress on physical quantity sensing and human-machine interface in magnetic-assisted TENGs.Our analysis highlights that magnetic assistance extends beyond the repulsive and suction forces under a magnetic field,thereby playing multifaceted roles in improving the output performance and environmental adaptability of the TENGs.Finally,we present the prevailing challenges and offer insights into the future trajectory of the magnetic-assisted TENGs development.
基金The National Science and Technology Support Program of China(No.2014BAC07B03)the Science and Technology Project of Transportation Committee of Beijing Government(No.2016-LZJKJ-01-006)the National Natural Science Foundation of China(No.51278016)
文摘Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.
文摘An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.
文摘A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.
文摘Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.
文摘The paper discusses how the inventory control of army equipment material runs sytematically under the two-level maintenance system,and establishes the inventory control model based on system dynamics.On the basis of modeling and simulation,the influence of different inventory upper limit on the whole system is studied,and the optimal inventory control mechanism under the model condition is foud.In addition,through the simulation of two replenishment strategies(s,S) and(T,s,S),the advantages and disadvantages and feasibility of each replenishment strategy are analyzed.
文摘The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use.
文摘The conventional process of building construction is associated with issues such as the waste of construction materials and environmental pollution.Sustainable development highlights the importance of energy conservation and eco-friendly practices.It is essential to use energy-efficient and green materials in building designs to ensure the healthy growth of construction companies.This article discusses the advantages and principles of incorporating energy-saving materials in architectural design.It examines the strategies and critical control points for using energy-saving materials in architectural design,offering guidance for the sustainable development of the construction industry.