Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
Background:Xiaoxianxiong decoction is a classic formula in traditional Chinese medicine used to treat type 2 diabetes mellitus and proven to be effective.But the material basis and underlying mechanisms remain unclear...Background:Xiaoxianxiong decoction is a classic formula in traditional Chinese medicine used to treat type 2 diabetes mellitus and proven to be effective.But the material basis and underlying mechanisms remain unclear.The aim of the present study was to elucidate the potential effective material basis of Xiaoxianxiong decoction and molecular mechanism treating type 2 diabetes mellitus.Methods:The absorbed bioactive components were identified based on serum pharmacochemistry.Network analysis were performed to obtain effect targets for docking verification with the absorbed prototypes to determine the potential effective material basis.On the above basis,network pharmacology was conducted to explore the molecular mechanism.Results:76 compounds were identified of Xiaoxianxiong decoction and 61 absorbed bioactive compounds were investigated.Serine/threonine kinase 1 and ALB were key targets acquired by network analysis for molecular docking.Subsequently,5 compounds were considered as the potential effective material basis,namely berberine,berberrubine,lariciresinol and gingerenone A,jatrorrhizine.Further,the mechanism mainly lies in the insulin signaling pathway,HIF-1 signaling pathway,PI3K-Akt signaling pathway,FoxO signaling pathway,AGE-RAGE signaling pathway in diabetic complications,phospholipase D signaling pathway to regulate blood glucose levels on target tissues as well as organs and exhibit anti-inflammatory,promote cell differentiation and cell growth,maintain oxygen homeostasis and affect the enzymes along with key metabolites.Conclusion:This integrated research strategy to investigate the treatment of Xiaoxianxiong decoction on type 2 diabetes mellitus provides valuable insights for further study and clinical practice of Xiaoxianxiong decoction.展开更多
Insulin resistance(IR)is a significant feature and one of the basic links in the pathogenesis of type 2 diabetes mellitus(T2DM).Chinese material medica(CMM)has promoted the development of traditional Chinese medicine ...Insulin resistance(IR)is a significant feature and one of the basic links in the pathogenesis of type 2 diabetes mellitus(T2DM).Chinese material medica(CMM)has promoted the development of traditional Chinese medicine due to its definite clinical efficacy in the treatment of IR and T2DM.However,owing to the fact that the mechanism of CMM is characterized by“multiple components and multiple targets”,which has not been effectively interpreted,result in the scientificity of clinical efficacy with CMM is controversial.Therefore,this article summarized the mechanisms of CMM and its main active components in improving IR and preventing and treating T2DM,whose aim is to provide valuable reference for the research mechanism on the treatment of IR and T2DM.展开更多
Objective:Use network pharmacology to explore the anti-COVID-19 mechanism of Huashi Baidu Recipe,supplemented by molecular docking verification.Methods:Thorugh databases such as TCMSP,GeneCard,String,and software such...Objective:Use network pharmacology to explore the anti-COVID-19 mechanism of Huashi Baidu Recipe,supplemented by molecular docking verification.Methods:Thorugh databases such as TCMSP,GeneCard,String,and software such as Cytoscape,AutoDockVina,network relationships was established,and the binding ability of active ingredients and targets is calculated through molecular docking,and biological function enrichment analysis was conducted.Result:The ingredients in Huashi Baidu Recipe that had strong affinity with SARS-CoV-23CL hydrolase(3CLpro)and angiotensin converting enzyme 2(ACE2)receptors include Quercetin,Baicalein,Astragaloside IV,Wogonin and other ingredients;25 active ingredients which obtained by screening had strong affinity with targets such as IL6,IL1B,NOS2 and CCL2.The biological function enrichment analysis mainly focused on Th17,Th1 and Th2 cell differentiation,NF-κB,MAPK,TNF,IL-17signaling pathway,etc.Conclusion:The active ingredients of Huashi Baidu Recipe may inhibit the infection and replication of SARS-CoV-2 virus,regulate RAS system’balance,inhibit excessive immune inflammatory response,and prevent inflammatory storm from appearing to fight COVID-19.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and ...Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and relevant literature were used to search for the active ingredients and targets of Radix Salviae and Carthami Flos in DHI.Disease targets related to myeloproliferative neoplasms were obtained from the GEO database,GeneCards,and DisGeNET database.The queried component targets were normalized using the UniProt database.Potential targets were identified by constructing protein-protein interactions networks using STRING 11.5 and visualized and analyzed using Cytoscape 3.9.1.GO and KEGG analysis were performed using the Metascape platform,and visualization was done using the built-in plug-in CluoGO or SangerBox platforms with Cytoscape 3.9.1.Results:The active ingredients of DHI for treating myeloproliferative neoplasms mainly consist of flavonoids and o-benzoquinones,including quercetin,luteolin,kaempferol,stigmasterol,tanshinone iia,cryptotanshinone,beta-carotene,2-isopropyl-8-methylphenanthrene-3,4-dione,and neocryptotanshinone ii.The potential targets are JUN,TP53,STAT3,AKT1,MAPK1,RELA,TNF,MAPK14,IL6,and FOS.The relevant signaling pathways involved are mainly TNFαsignaling pathway,PI3K-Akt signaling pathway,apoptosis,IL-17 signaling pathway,cellular senescence,MAPK signaling pathway,p53 signaling pathway,JAK-STAT signaling pathway,and NF-kappa B signaling.Conclusions:DHI acts mainly through flavonoids and o-benzoquinones to treat myeloproliferative neoplasms in a multi-targeted and multi-pathway manner.展开更多
isTraditional Chinese medicine(TCM)is a highly complex chemical substance system,which not only reflected in the complexity of the chemical components and their interrelationships,but also in the intricacy of the pres...isTraditional Chinese medicine(TCM)is a highly complex chemical substance system,which not only reflected in the complexity of the chemical components and their interrelationships,but also in the intricacy of the prescription’s connection with the human body.Component compatibility strategy has been proposed for developing modern TCM since 2005 and established comprehensive relevant technologies and research approaches.Moreover,to meet the safety and efficacy of current pharmaceuticals,research on fixed-dose combination drugs is directed by modern scientific theories,conforms to TCM compatibility principles and clarifies material basis and pharmacological mechanisms and component-effect correlations.This review summarized gaps and feasibility of fixed-dose combination strategy in the development of modern TCM research and assessed their advantages and disadvantages in light of contemporary drug combination research practices.展开更多
目的以入血成分为研究对象,基于网络药理学探究衢枳壳对糖尿病起效的物质基础及作用机制。方法采用高效液相色谱串联四极杆-静电场轨道阱高分辨质谱(high-performance liquid chromatography tandem quadrupole-electrostatic field orb...目的以入血成分为研究对象,基于网络药理学探究衢枳壳对糖尿病起效的物质基础及作用机制。方法采用高效液相色谱串联四极杆-静电场轨道阱高分辨质谱(high-performance liquid chromatography tandem quadrupole-electrostatic field orbitrap high resolution mass spectrometry,HPLC-Q-Exactive Orbitrap MS/MS)对衢枳壳入血成分进行鉴定,在此基础上通过Swiss Target Prediction与SuperPred数据库预测入血成分作用靶点,同时在OMIM,GeneCards等数据库获取糖尿病靶点。采用Cytoscape 3.9.1绘制中药衢枳壳“活性成分-靶点-疾病”网络关系图,利用String数据分析平台进行蛋白互作(protein-protein interaction,PPI)网络分析,筛选关键靶点。通过DAVID数据库对关键靶点进行基因本体功能(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。应用Autodock 1.5.7软件进行分子对接验证。结果共鉴定衢枳壳入血成分20个,筛选出潜在靶点170个,核心靶点32个。GO功能富集和KEGG信号通路分析结果显示缺氧诱导因子(hypoxia-inducible factor,HIF)-1信号通路、晚期糖基化终末产物(advanced glycation end products,AGE)-晚期糖基化终产物受体(receptor for advanced glycation end products,RAGE)信号通路、表皮生长因子(epidermal growth factor receptor,EGFR)信号通路、癌症蛋白聚糖通路等为衢枳壳降糖的关键通路,丝氨酸/苏氨酸蛋白激酶(RAC serine/threonine-protein kinase,AKT)1、白蛋白(albumin,ALB)、细胞肿瘤抗原p53(cellular tumor antigenp 53,TP53)、肿瘤坏死因子(tumor necrosis factor,TNF)、EGFR为其中关键靶点,且衢枳壳中5个活性成分与核心靶点经分子对接后的结合活性较好。结论衢枳壳中的芦丁、新橙皮苷、橙皮苷、芸香柚皮苷、川陈皮素等可能为衢枳壳降糖的物质基础,可能是通过调控HIF-1、AGE-RAGE、EGFR等信号通路及AKT1、ALB、TP53等核心基因发挥降糖作用。展开更多
目的总结天然产物抗肺癌的机制,为候选治疗肺癌新的前瞻性药物提供理论基础。方法利用肺癌、中药、药理学及其组合等关键词,收集中国知网、万方、维普、PubMed、Science Direct和Web of science等数据库有关天然产物抗肺癌作用研究的文...目的总结天然产物抗肺癌的机制,为候选治疗肺癌新的前瞻性药物提供理论基础。方法利用肺癌、中药、药理学及其组合等关键词,收集中国知网、万方、维普、PubMed、Science Direct和Web of science等数据库有关天然产物抗肺癌作用研究的文章,并进行总结。结果中医药治疗肺癌优势明显,具有药理机制新颖、毒性低、不良反应小的特点,可增效减毒、提高患者生活质量。天然产物主要包括黄酮类、生物碱类、多糖类、萜类、皂苷类和酚类,具有抑制肿瘤细胞周期、抑制增殖、诱导凋亡、促进自噬、抑制肿瘤细胞侵袭和转移的作用;天然产物与细胞毒性药物联合使用,可以增强疗效或降低耐药性,延缓肺癌的进展,延长患者的生存时间。结论中药含有多种黄酮、生物碱、萜及其苷类、多酚和其他可有效对抗肺癌的活性化合物,适合作为治疗肺癌的候选药物。展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金National Natural Science Foundation of China(No.8177141422).
文摘Background:Xiaoxianxiong decoction is a classic formula in traditional Chinese medicine used to treat type 2 diabetes mellitus and proven to be effective.But the material basis and underlying mechanisms remain unclear.The aim of the present study was to elucidate the potential effective material basis of Xiaoxianxiong decoction and molecular mechanism treating type 2 diabetes mellitus.Methods:The absorbed bioactive components were identified based on serum pharmacochemistry.Network analysis were performed to obtain effect targets for docking verification with the absorbed prototypes to determine the potential effective material basis.On the above basis,network pharmacology was conducted to explore the molecular mechanism.Results:76 compounds were identified of Xiaoxianxiong decoction and 61 absorbed bioactive compounds were investigated.Serine/threonine kinase 1 and ALB were key targets acquired by network analysis for molecular docking.Subsequently,5 compounds were considered as the potential effective material basis,namely berberine,berberrubine,lariciresinol and gingerenone A,jatrorrhizine.Further,the mechanism mainly lies in the insulin signaling pathway,HIF-1 signaling pathway,PI3K-Akt signaling pathway,FoxO signaling pathway,AGE-RAGE signaling pathway in diabetic complications,phospholipase D signaling pathway to regulate blood glucose levels on target tissues as well as organs and exhibit anti-inflammatory,promote cell differentiation and cell growth,maintain oxygen homeostasis and affect the enzymes along with key metabolites.Conclusion:This integrated research strategy to investigate the treatment of Xiaoxianxiong decoction on type 2 diabetes mellitus provides valuable insights for further study and clinical practice of Xiaoxianxiong decoction.
文摘Insulin resistance(IR)is a significant feature and one of the basic links in the pathogenesis of type 2 diabetes mellitus(T2DM).Chinese material medica(CMM)has promoted the development of traditional Chinese medicine due to its definite clinical efficacy in the treatment of IR and T2DM.However,owing to the fact that the mechanism of CMM is characterized by“multiple components and multiple targets”,which has not been effectively interpreted,result in the scientificity of clinical efficacy with CMM is controversial.Therefore,this article summarized the mechanisms of CMM and its main active components in improving IR and preventing and treating T2DM,whose aim is to provide valuable reference for the research mechanism on the treatment of IR and T2DM.
基金National Natural Science Foundation of China(No.81273662,81473592)。
文摘Objective:Use network pharmacology to explore the anti-COVID-19 mechanism of Huashi Baidu Recipe,supplemented by molecular docking verification.Methods:Thorugh databases such as TCMSP,GeneCard,String,and software such as Cytoscape,AutoDockVina,network relationships was established,and the binding ability of active ingredients and targets is calculated through molecular docking,and biological function enrichment analysis was conducted.Result:The ingredients in Huashi Baidu Recipe that had strong affinity with SARS-CoV-23CL hydrolase(3CLpro)and angiotensin converting enzyme 2(ACE2)receptors include Quercetin,Baicalein,Astragaloside IV,Wogonin and other ingredients;25 active ingredients which obtained by screening had strong affinity with targets such as IL6,IL1B,NOS2 and CCL2.The biological function enrichment analysis mainly focused on Th17,Th1 and Th2 cell differentiation,NF-κB,MAPK,TNF,IL-17signaling pathway,etc.Conclusion:The active ingredients of Huashi Baidu Recipe may inhibit the infection and replication of SARS-CoV-2 virus,regulate RAS system’balance,inhibit excessive immune inflammatory response,and prevent inflammatory storm from appearing to fight COVID-19.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
基金This work has been supported by grants from the Taishan Scholars Program(TSQN201812015)the Program for Multidisciplinary Research and Innovation Team of Young Scholars at Shandong University(2020QNQT007).
文摘Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and relevant literature were used to search for the active ingredients and targets of Radix Salviae and Carthami Flos in DHI.Disease targets related to myeloproliferative neoplasms were obtained from the GEO database,GeneCards,and DisGeNET database.The queried component targets were normalized using the UniProt database.Potential targets were identified by constructing protein-protein interactions networks using STRING 11.5 and visualized and analyzed using Cytoscape 3.9.1.GO and KEGG analysis were performed using the Metascape platform,and visualization was done using the built-in plug-in CluoGO or SangerBox platforms with Cytoscape 3.9.1.Results:The active ingredients of DHI for treating myeloproliferative neoplasms mainly consist of flavonoids and o-benzoquinones,including quercetin,luteolin,kaempferol,stigmasterol,tanshinone iia,cryptotanshinone,beta-carotene,2-isopropyl-8-methylphenanthrene-3,4-dione,and neocryptotanshinone ii.The potential targets are JUN,TP53,STAT3,AKT1,MAPK1,RELA,TNF,MAPK14,IL6,and FOS.The relevant signaling pathways involved are mainly TNFαsignaling pathway,PI3K-Akt signaling pathway,apoptosis,IL-17 signaling pathway,cellular senescence,MAPK signaling pathway,p53 signaling pathway,JAK-STAT signaling pathway,and NF-kappa B signaling.Conclusions:DHI acts mainly through flavonoids and o-benzoquinones to treat myeloproliferative neoplasms in a multi-targeted and multi-pathway manner.
文摘isTraditional Chinese medicine(TCM)is a highly complex chemical substance system,which not only reflected in the complexity of the chemical components and their interrelationships,but also in the intricacy of the prescription’s connection with the human body.Component compatibility strategy has been proposed for developing modern TCM since 2005 and established comprehensive relevant technologies and research approaches.Moreover,to meet the safety and efficacy of current pharmaceuticals,research on fixed-dose combination drugs is directed by modern scientific theories,conforms to TCM compatibility principles and clarifies material basis and pharmacological mechanisms and component-effect correlations.This review summarized gaps and feasibility of fixed-dose combination strategy in the development of modern TCM research and assessed their advantages and disadvantages in light of contemporary drug combination research practices.
文摘目的以入血成分为研究对象,基于网络药理学探究衢枳壳对糖尿病起效的物质基础及作用机制。方法采用高效液相色谱串联四极杆-静电场轨道阱高分辨质谱(high-performance liquid chromatography tandem quadrupole-electrostatic field orbitrap high resolution mass spectrometry,HPLC-Q-Exactive Orbitrap MS/MS)对衢枳壳入血成分进行鉴定,在此基础上通过Swiss Target Prediction与SuperPred数据库预测入血成分作用靶点,同时在OMIM,GeneCards等数据库获取糖尿病靶点。采用Cytoscape 3.9.1绘制中药衢枳壳“活性成分-靶点-疾病”网络关系图,利用String数据分析平台进行蛋白互作(protein-protein interaction,PPI)网络分析,筛选关键靶点。通过DAVID数据库对关键靶点进行基因本体功能(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。应用Autodock 1.5.7软件进行分子对接验证。结果共鉴定衢枳壳入血成分20个,筛选出潜在靶点170个,核心靶点32个。GO功能富集和KEGG信号通路分析结果显示缺氧诱导因子(hypoxia-inducible factor,HIF)-1信号通路、晚期糖基化终末产物(advanced glycation end products,AGE)-晚期糖基化终产物受体(receptor for advanced glycation end products,RAGE)信号通路、表皮生长因子(epidermal growth factor receptor,EGFR)信号通路、癌症蛋白聚糖通路等为衢枳壳降糖的关键通路,丝氨酸/苏氨酸蛋白激酶(RAC serine/threonine-protein kinase,AKT)1、白蛋白(albumin,ALB)、细胞肿瘤抗原p53(cellular tumor antigenp 53,TP53)、肿瘤坏死因子(tumor necrosis factor,TNF)、EGFR为其中关键靶点,且衢枳壳中5个活性成分与核心靶点经分子对接后的结合活性较好。结论衢枳壳中的芦丁、新橙皮苷、橙皮苷、芸香柚皮苷、川陈皮素等可能为衢枳壳降糖的物质基础,可能是通过调控HIF-1、AGE-RAGE、EGFR等信号通路及AKT1、ALB、TP53等核心基因发挥降糖作用。
文摘目的总结天然产物抗肺癌的机制,为候选治疗肺癌新的前瞻性药物提供理论基础。方法利用肺癌、中药、药理学及其组合等关键词,收集中国知网、万方、维普、PubMed、Science Direct和Web of science等数据库有关天然产物抗肺癌作用研究的文章,并进行总结。结果中医药治疗肺癌优势明显,具有药理机制新颖、毒性低、不良反应小的特点,可增效减毒、提高患者生活质量。天然产物主要包括黄酮类、生物碱类、多糖类、萜类、皂苷类和酚类,具有抑制肿瘤细胞周期、抑制增殖、诱导凋亡、促进自噬、抑制肿瘤细胞侵袭和转移的作用;天然产物与细胞毒性药物联合使用,可以增强疗效或降低耐药性,延缓肺癌的进展,延长患者的生存时间。结论中药含有多种黄酮、生物碱、萜及其苷类、多酚和其他可有效对抗肺癌的活性化合物,适合作为治疗肺癌的候选药物。