In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermark...In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.展开更多
The emerging photovoltaic(PV)technologies,such as organic and perovskite PVs,have the characteristics of complex compositions and processing,resulting in a large multidimensional parameter space for the development an...The emerging photovoltaic(PV)technologies,such as organic and perovskite PVs,have the characteristics of complex compositions and processing,resulting in a large multidimensional parameter space for the development and optimization of the technologies.Traditional manual methods are time-consuming and laborintensive in screening and optimizing material properties.Materials genome engineering(MGE)advances an innovative approach that combines efficient experimentation,big database and artificial intelligence(AI)algorithms to accelerate materials research and development.High-throughput(HT)research platforms perform multidimensional experimental tasks rapidly,providing a large amount of reliable and consistent data for the creation of materials databases.Therefore,the development of novel experimental methods combining HT and AI can accelerate materials design and application,which is beneficial for establishing material-processing-property relationships and overcoming bottlenecks in the development of emerging PV technologies.This review introduces the key technologies involved in MGE and overviews the accelerating role of MGE in the field of organic and perovskite PVs.展开更多
Extensive trial and error in the variable space is the main cause of low efficiency and high cost in material development.The experimental tasks can be reduced significantly in the case that the variable space is narr...Extensive trial and error in the variable space is the main cause of low efficiency and high cost in material development.The experimental tasks can be reduced significantly in the case that the variable space is narrowed down by reliable computer simulations.Because of their numerous variables in material design,however,the variable space is still too large to be accessed thoroughly even with a computational approach.High-throughput computations(HTC)make it possible to complete a material screening in a large space by replacing the conventionally manual and sequential operations with automatic,robust,and concurrent streamlines.The efficiency of HTC,which is one of the pillars of materials genome engineering,has been verified in many studies,but its applications are still limited by demanding computational costs.Introduction of data mining and artificial intelligence into HTC has become an effective approach to solve the problem.In the past years,many studies have focused on the development and application of HTC and data combined approaches,which is considered as a new paradigm in computational materials science.This review focuses on the main advances in the field of data-assisted HTC for material research and development and provides our outlook on its future development.展开更多
Fracture toughness plays a vital role in damage tolerance design of materials and assessment of structural integrity.To solve these problems of com-plexity,time-consuming,and low accuracy in obtaining the fracture tou...Fracture toughness plays a vital role in damage tolerance design of materials and assessment of structural integrity.To solve these problems of com-plexity,time-consuming,and low accuracy in obtaining the fracture toughness value of nickel-based superalloys through experiments.A combination prediction model is proposed based on the principle of materials genome engineering,the fracture toughness values of nickel-based superalloys at different temperatures,and different compositions can be predicted based on the existing experimental data.First,to solve the problem of insufficient feature extraction based on manual experience,the Deep Belief Network(DBN)is used to extract features,and an attention mechanism module is introduced.To achieve the purpose of strengthen-ing the important features,an attention weight is assigned to each feature accord-ing to the importance of the feature.Then,the feature vectors obtained by the DBN module based on the Attention mechanism(A-DBN)are spliced with the original features.Thus,the prediction accuracy of the model is improved by extracting high-order combined features and low-order linear features between input and output data.Finally,the spliced feature vectors are put into the Support Vector Regression(SVR)model to further improve the regression prediction abil-ity of the model.The results of the contrast experiment show that the model can effectively improve the prediction accuracy of the fracture toughness value of nickel-based superalloys.展开更多
High-throughput experimental techniques can accelerate and economize corrosion evaluation,and thus,have great potential in the development of new materials for corrosion protection such as corrosion-resistant metals,c...High-throughput experimental techniques can accelerate and economize corrosion evaluation,and thus,have great potential in the development of new materials for corrosion protection such as corrosion-resistant metals,corrosion inhibitors,and anticorrosion coatings.This concise review highlights high-throughput experimental techniques that have been recently applied for corrosion research,including(i)the high-throughput preparation of metal samples in the form of thin films or bulk materials,(ii)high-throughput experiments based on corrosive solutions with independent or gradient parameters,(iii)high-throughput evaluation of changes in physicochemical properties,and(iv)high-throughput corrosion evaluation by electrochemical methods.To advance automated and intelligent corrosion research,future directions for the development of the high-throughput corrosion experimental and characterization techniques are also discussed.展开更多
Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,exp...Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,experimentation,and data-driven techniques,enabling the effective prediction,rapid synthesis,and characterization of many classes of materials.In this brief review,we introduce the achievements made in the field of metallic glasses(MGs)using MGE,in particular high-throughput experimentation and data-driven approaches.High-throughput experiments help to efficiently synthesize and characterize many materials in a short period of time,enabling the construction of high-quality material databases for data-driven methods.Paired with machine learning,potential alloys of desired properties may be revealed and predicted.Along with the progress in computational power and algorithms of machine learning,the complex composition-structure-properties relationship is hopefully established,which in turn help efficient and precise prediction of new MGs.展开更多
基金This work is supported by Foundation of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research No.ICDDXN004Foundation of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.
基金the financial support from the National Natural Science Foundation of China(52394273 and 52373179).
文摘The emerging photovoltaic(PV)technologies,such as organic and perovskite PVs,have the characteristics of complex compositions and processing,resulting in a large multidimensional parameter space for the development and optimization of the technologies.Traditional manual methods are time-consuming and laborintensive in screening and optimizing material properties.Materials genome engineering(MGE)advances an innovative approach that combines efficient experimentation,big database and artificial intelligence(AI)algorithms to accelerate materials research and development.High-throughput(HT)research platforms perform multidimensional experimental tasks rapidly,providing a large amount of reliable and consistent data for the creation of materials databases.Therefore,the development of novel experimental methods combining HT and AI can accelerate materials design and application,which is beneficial for establishing material-processing-property relationships and overcoming bottlenecks in the development of emerging PV technologies.This review introduces the key technologies involved in MGE and overviews the accelerating role of MGE in the field of organic and perovskite PVs.
基金financial support from the Natural Science Foundation of China(No.21973064 to DX and No.22173064 to MY).
文摘Extensive trial and error in the variable space is the main cause of low efficiency and high cost in material development.The experimental tasks can be reduced significantly in the case that the variable space is narrowed down by reliable computer simulations.Because of their numerous variables in material design,however,the variable space is still too large to be accessed thoroughly even with a computational approach.High-throughput computations(HTC)make it possible to complete a material screening in a large space by replacing the conventionally manual and sequential operations with automatic,robust,and concurrent streamlines.The efficiency of HTC,which is one of the pillars of materials genome engineering,has been verified in many studies,but its applications are still limited by demanding computational costs.Introduction of data mining and artificial intelligence into HTC has become an effective approach to solve the problem.In the past years,many studies have focused on the development and application of HTC and data combined approaches,which is considered as a new paradigm in computational materials science.This review focuses on the main advances in the field of data-assisted HTC for material research and development and provides our outlook on its future development.
基金supported by Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Information Science and Technology University,Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(No.ICDDXN004).
文摘Fracture toughness plays a vital role in damage tolerance design of materials and assessment of structural integrity.To solve these problems of com-plexity,time-consuming,and low accuracy in obtaining the fracture toughness value of nickel-based superalloys through experiments.A combination prediction model is proposed based on the principle of materials genome engineering,the fracture toughness values of nickel-based superalloys at different temperatures,and different compositions can be predicted based on the existing experimental data.First,to solve the problem of insufficient feature extraction based on manual experience,the Deep Belief Network(DBN)is used to extract features,and an attention mechanism module is introduced.To achieve the purpose of strengthen-ing the important features,an attention weight is assigned to each feature accord-ing to the importance of the feature.Then,the feature vectors obtained by the DBN module based on the Attention mechanism(A-DBN)are spliced with the original features.Thus,the prediction accuracy of the model is improved by extracting high-order combined features and low-order linear features between input and output data.Finally,the spliced feature vectors are put into the Support Vector Regression(SVR)model to further improve the regression prediction abil-ity of the model.The results of the contrast experiment show that the model can effectively improve the prediction accuracy of the fracture toughness value of nickel-based superalloys.
基金supported by the National Science and Technology Resources Investigation Program of China(Grant No.2021FY100603,2019FY101404).
文摘High-throughput experimental techniques can accelerate and economize corrosion evaluation,and thus,have great potential in the development of new materials for corrosion protection such as corrosion-resistant metals,corrosion inhibitors,and anticorrosion coatings.This concise review highlights high-throughput experimental techniques that have been recently applied for corrosion research,including(i)the high-throughput preparation of metal samples in the form of thin films or bulk materials,(ii)high-throughput experiments based on corrosive solutions with independent or gradient parameters,(iii)high-throughput evaluation of changes in physicochemical properties,and(iv)high-throughput corrosion evaluation by electrochemical methods.To advance automated and intelligent corrosion research,future directions for the development of the high-throughput corrosion experimental and characterization techniques are also discussed.
基金support by the National Key Research and Development Program of China(grant no.2018YFA0703600)the National Natural Science Foundation of China(grant no.51825104).
文摘Materials genome engineering(MGE)has been successfully applied in various fields,resulting in a series of novel materials with excellent performance.Significant progress has been made in high-throughput simulation,experimentation,and data-driven techniques,enabling the effective prediction,rapid synthesis,and characterization of many classes of materials.In this brief review,we introduce the achievements made in the field of metallic glasses(MGs)using MGE,in particular high-throughput experimentation and data-driven approaches.High-throughput experiments help to efficiently synthesize and characterize many materials in a short period of time,enabling the construction of high-quality material databases for data-driven methods.Paired with machine learning,potential alloys of desired properties may be revealed and predicted.Along with the progress in computational power and algorithms of machine learning,the complex composition-structure-properties relationship is hopefully established,which in turn help efficient and precise prediction of new MGs.