The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy s...The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy soil is necessary to reduce the total amount of industrial wastes. Surplus concrete is also in a similar situation. Coarse and fine aggregates are removed from surplus concrete as an intermediate treatment, however, concrete sludge still remains. The authors propose a reuse method that involves the muddy soil being mixed with concrete sludge as an improvement material. The possibility of the utilization of concrete sludge was investigated through laboratory experiments. As a result, it was found that the unconfined compressive strength of the improved soil mixed with concrete sludge increased as the curing proceeded.展开更多
The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performanc...The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.展开更多
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis ...ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.展开更多
文摘The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy soil is necessary to reduce the total amount of industrial wastes. Surplus concrete is also in a similar situation. Coarse and fine aggregates are removed from surplus concrete as an intermediate treatment, however, concrete sludge still remains. The authors propose a reuse method that involves the muddy soil being mixed with concrete sludge as an improvement material. The possibility of the utilization of concrete sludge was investigated through laboratory experiments. As a result, it was found that the unconfined compressive strength of the improved soil mixed with concrete sludge increased as the curing proceeded.
文摘The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.
基金supported by the Natural Science Foundation of China(No.21174114)the Ministry of Education Plan for Yangtze River Scholar and Innovation Team Development(No.IRT1177)+2 种基金Scientific and Technical Plan Project of Gansu Province(No. 1204GKCA006)the Natural Science Foundation of Gansu Province (No.1010RJZA024)Scientific and Technical Innovation Project of Northwest Normal University(No.nwnu-kjcxgc-03-63)
文摘ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.