期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy 被引量:2
1
作者 任洋 郝瑞亭 +4 位作者 刘思佳 郭杰 王国伟 徐应强 牛智川 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期133-137,共5页
High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achiev... High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7A over an area of 28μm × 28μm. At the same time, the mismatches between GaSb and InAs/InAs0.73Sb0.27 superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs0.73Sb0.27 SLs around 1.8 A (75 periods) and 2.1A (300 periods) over an area of 20 μm×20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10^6Ω·cm^2. At 77K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8μm and 5.1μm, respectively. 展开更多
关键词 INASSB as is GaSb on in High Lattice Match Growth of InAsSb Based materials by Molecular Beam Epitaxy of by
下载PDF
Study on friction performance and mechanism of slipper pair under different paired materials in high-pressure axial piston pump 被引量:5
2
作者 Huaichao WU Limei ZHAO +1 位作者 Siliang NI Yongyong HE 《Friction》 SCIE CSCD 2020年第5期957-969,共13页
High-pressure axial piston pumps operate in high-speed and high-pressure environments. The contact state of the slipper against the swashplate can easily change from an oil film lubrication to a mixed oil film/asperit... High-pressure axial piston pumps operate in high-speed and high-pressure environments. The contact state of the slipper against the swashplate can easily change from an oil film lubrication to a mixed oil film/asperity contact, or even dry friction. To improve the dry friction performance of slipper pairs and to avoid their potentially rapid failure, this study examined the effects of material matching on the dry friction performance of the slipper pair for high-pressure axial piston pumps. A FAIAX6 friction and wear tester was developed, and the dry friction coefficients of the slipper pairs matched with different materials were studied using this tester. Based on the thermo-mechanical coupling of the slipper pair with the working process, the contact surface temperatures of the slipper pairs matched with different materials were calculated and analyzed for the same working conditions. Following this, the effects of the material properties on the temperature increase at the slipper sliding contact surfaces were revealed. The reliabilities of the temperature calculations and analysis results were verified through orthogonal tests of slipper pairs matched with different materials. The results indicate that the influence of the material density on the friction coefficient is greater than that of the Poisson's ratio or the elastic modulus, and that the slipper material chosen should have a high thermal conductivity, low density, and low specific heat, whereas the swashplate material should be high in specific heat, density, and thermal conductivity;in addition, the slipper pair should be a type of hard material to match the type of soft material applied;that is, the hardness of the swashplate material should be greater than that of the slipper material. 展开更多
关键词 axial piston pump slipper pair material matching dry friction TEMPERATURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部