Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic fla...Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.展开更多
基金supported by the National Basic Research Program of China(2015CB921102 and 2019YFA0308403)the National Natural Science Foundation of China(11674028 and11822407)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)China Postdoctoral Science Foundation(2020M670011)。
文摘Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.