In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration ...In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration patterns and permeation behavior are explored so as to provide a theoretical basis for their application. The results show that the adsorption process for metal ions with different valences by SB barrier materials is fast, and the higher the valence, the greater the adsorption capacity. The fitting of the adsorption process conforms to pseudo-second-order adsorption kinetics and Langmuir-Freundlich adsorption equation, which explains that chemical adsorption is the dominating state and that the SB surface has certain heterogeneity. The permeability coefficient of K+, Ca2+ and Fe3+ in SB each has a maximum and the higher the valence, the sooner the maximum appears. Also the higher the valence, the more obvious the effect on SB retardation performance; and the sooner the ion breaks through the barrier wall completely, that is, the wall's retardation performance for higher valent ions may decline.展开更多
To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/m...To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/mixtures containing composite flame retardant materials(M-FRs) of different proportions. Temperature sweep, frequency sweep, repeated creep test, force ductility test and bending beam rheological test were carried out to research the dynamic mechanical properties of asphalt mortars containing M-FRs; wheeltracking test, low-temperature bending test and freeze-thaw split test were used to study the road performances of asphalt mixtures containing M-FRs. The results show that high-temperature performances of the three flame retardant asphalt mortars improve greatly, while low-temperature cracking resistances decline. Both hightemperature performances and water stabilities of asphalt mixtures containing M-FRs are quite good and exceed the specification requirements. However, their low-temperature performances decline in different degrees. In summary, besides their good flame retardancy, the flame retardant asphalt mortars and mixtures also exhibit acceptable road performance.展开更多
基金supported by Public Welfare Special Research of National Environmental Protection of China (No. 201309004)
文摘In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration patterns and permeation behavior are explored so as to provide a theoretical basis for their application. The results show that the adsorption process for metal ions with different valences by SB barrier materials is fast, and the higher the valence, the greater the adsorption capacity. The fitting of the adsorption process conforms to pseudo-second-order adsorption kinetics and Langmuir-Freundlich adsorption equation, which explains that chemical adsorption is the dominating state and that the SB surface has certain heterogeneity. The permeability coefficient of K+, Ca2+ and Fe3+ in SB each has a maximum and the higher the valence, the sooner the maximum appears. Also the higher the valence, the more obvious the effect on SB retardation performance; and the sooner the ion breaks through the barrier wall completely, that is, the wall's retardation performance for higher valent ions may decline.
基金Funded by the National Key Technology R&D Program for the 12th Five-Year Plan(No.2011BAE27B04)
文摘To research the dynamic mechanical properties and road performances of flame retardant asphalt mortars and mixtures, four different asphalt mortars/mixtures were prepared: a reference group and three asphalt mortars/mixtures containing composite flame retardant materials(M-FRs) of different proportions. Temperature sweep, frequency sweep, repeated creep test, force ductility test and bending beam rheological test were carried out to research the dynamic mechanical properties of asphalt mortars containing M-FRs; wheeltracking test, low-temperature bending test and freeze-thaw split test were used to study the road performances of asphalt mixtures containing M-FRs. The results show that high-temperature performances of the three flame retardant asphalt mortars improve greatly, while low-temperature cracking resistances decline. Both hightemperature performances and water stabilities of asphalt mixtures containing M-FRs are quite good and exceed the specification requirements. However, their low-temperature performances decline in different degrees. In summary, besides their good flame retardancy, the flame retardant asphalt mortars and mixtures also exhibit acceptable road performance.