期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials 被引量:1
1
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field High-efficiency
下载PDF
A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications? 被引量:5
2
作者 Eng Liang Lim Chi Chin Yap +2 位作者 Mohammad Hafizuddin Hj Jumali Mohd Asri Mat Teridi Chin Hoong Teh 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期92-103,共12页
Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdT... Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode,carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future. 展开更多
关键词 Perovskite solar cells GRAPHENE Conductive electrode Carrier transporting material Stabilizer material Performance and stability
下载PDF
Review of current progress in hole-transporting materials for perovskite solar cells 被引量:4
3
作者 Prerna Mahajan Bhavya Padha +5 位作者 Sonali Verma Vinay Gupta Ram Datt Wing Chung Tsoi Soumitra Satapathi Sandeep Arya 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期330-386,共57页
Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an... Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC. 展开更多
关键词 Hole transporting material Perovskite solar cells Power conversion efficiency STABILITY
下载PDF
Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells 被引量:3
4
作者 Tengling Ye Xiaochen Sun +1 位作者 Xiaoru Zhang Sue Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期459-476,I0010,共19页
In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The p... In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed. 展开更多
关键词 Perovskite solar cell Inorganic hole transport materials Hole transport layer CUI CUSCN
下载PDF
Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups? 被引量:2
5
作者 Xuepeng Liu Fantai Kong +7 位作者 Wangchao Chen Ting Yu Yin Huang Tasawar Hayat Ahmed Alsaedi Hongxia Wang Jian Chen Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1409-1414,共6页
In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c... In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%). 展开更多
关键词 Hole transporting materials PEROVSKITE π-conjugation length Side groups
下载PDF
Impact of typhoon Lekima(2019)on material transport in Laizhou Bay using Lagrangian coherent structures 被引量:1
6
作者 Qi LOU Zhengyan LI +2 位作者 Yanwei ZHANG Yilei FENG Xueqing ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期922-933,共12页
Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barrier... Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barriers in the course of material transport and material accumulation area,etc.Therefore,Lagrangian coherent structures(a method developed for describing the transport structure of fluids in recent years)was introduced to investigate and predict the floating material and debris transport process in the Laizhou Bay,Bohai Sea,during typhoon Lekima in 2019.Results show that the Lagrangian coherent structure could well explain the complex flow phenomena in the bay.During the typhoon,the general direction of floating material transport in the Laizhou Bay was anticlockwise.There was a channel for material transport in the northwest and south of the bay,and there are transportation obstacles in the northeast-southwest direction in the middle of the bay.Therefore,the typhoon might worsen the water quality.These results provide references for precise countermeasures to control the formulation of pollution in the Laizhou Bay. 展开更多
关键词 material transport TYPHOON Lagrangian coherent structures Laizhou Bay
下载PDF
Highly efficient perovskite solar cells based on symmetric hole transport material constructed with indaceno[1,2-b:5,6-b’]dithiophene core building block 被引量:2
7
作者 Cheng Wu Cheng Chen +6 位作者 Li Tao Xingdong Ding Mengmeng Zheng Hongping Li Gongqiang Li Hongfei Lu Ming Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期98-103,共6页
Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and ... Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs. 展开更多
关键词 Perovskite solar cell Hole transport material MESOPOROUS Indaceno[1 2-b 6-b’]dithiophene
下载PDF
Diketopyrrolopyrrole based D-π-A-π-D type small organic molecules as hole transporting materials for perovskite solar cells 被引量:1
8
作者 Haoliang Cheng Xiaojuan Zhao +4 位作者 Yan Shen Mingkui Wang Lingyun Wang Herbert Meier Derong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1175-1182,共8页
Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of p... Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells. 展开更多
关键词 Perovskite solar cells DIKETOPYRROLOPYRROLE Hole transporting materials Donors π bridges
下载PDF
Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells 被引量:1
9
作者 Mengmeng Zheng Yawei Miao +5 位作者 Ali Asgher Syed Cheng Chen Xichuan Yang Liming Ding Huaming Li Ming Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期374-382,共9页
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo... Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions. 展开更多
关键词 Non-fullerene Electron transport material Perovskite solar cell Inverted structure
下载PDF
Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells 被引量:1
10
作者 Zhiquan Zhang Zheling Zhang +4 位作者 Yufu Yu Bin Zhao Sheng Li Jian Zhang Songting Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期196-202,I0007,共8页
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in... Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs. 展开更多
关键词 Organic solar cells Electron transport materials Thickness-insensitive Non-conjugated polymer
下载PDF
Progress in hole-transporting materials for perovskite solar cells 被引量:3
11
作者 Xichuan Yang Haoxin Wang +2 位作者 Bin Cai Ze Yu Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期650-672,共23页
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien... In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs. 展开更多
关键词 Perovskite solar cells Efficient charge extraction Hole transporting materials Recombination losses
下载PDF
A novel phenoxazine-based hole transport material for efficient perovskite solar cell 被引量:1
12
作者 Ming Cheng Cheng Chen +4 位作者 Bo Xu Yong Hua Fuguo Zhang Lars Kloo Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期698-706,共9页
Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as elec... Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction ofa 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-flee HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFS1). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%. 展开更多
关键词 Dopant-flee Perovskite solar cell Hole transport material Phenoxazine Thin fiim
下载PDF
Heat transport in low-dimensional materials: A review and perspective 被引量:1
13
作者 Zhiping Xu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第3期113-121,共9页
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t... Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges. 展开更多
关键词 Nanoscale heat transport Low-dimensional materials Defects Disorder Interfaces Quantum mechanical effects
下载PDF
The importance of wave-tide-surge interaction to coastal material transport and diffusion
14
作者 尹宝树 黄勇 +2 位作者 林祥 侯一筠 杨德周 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2007年第1期42-50,共9页
This study is to combine a coastal high-resolution (2′×2′) two-way coupled wave-tide-surge numerical model (including 3 main physical mechanisms) with a material transport/diffusion model for understanding the ... This study is to combine a coastal high-resolution (2′×2′) two-way coupled wave-tide-surge numerical model (including 3 main physical mechanisms) with a material transport/diffusion model for understanding the law of material transport/diffusion. Results show that the law of material trans- port/diffusion driven by background current field simulated by the coupled wave-tide-surge model is dif- ferent from that simulated by pure tide-surge, and more different from traditional ones driven by tidal current. The coupled background current should be taken into account for the simulation. 展开更多
关键词 coupled model material transport/diffusion wave-tide-surge interaction
下载PDF
Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells
15
作者 Xianfu Zhang Xuepeng Liu +7 位作者 Nan Wu Rahim Ghadari Mingyuan Han Ying Wang Yong Ding Molang Cai Zuopeng Qu Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期19-26,共8页
A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The i... A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved. 展开更多
关键词 Hole transporting materials Methylsulfanyl METHOXY Perovskite solar cells
下载PDF
Decorating hole transport material with −CF_(3) groups for highly efficient and stable perovskite solar cells
16
作者 Bin Li Yuan Cai +6 位作者 Xia Tian Xiaozhong Liang Da Li Zheng Zhang Sijing Wang Kunpeng Guo Zhike Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期523-531,I0012,共10页
The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to imp... The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs. 展开更多
关键词 Perovskite solar cell Hole transport material Decorating group Trifluoromethyl group Nonconjugated alkoxyl bridging
下载PDF
Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells
17
作者 CHENG Zheng-chun FANG Yin-yu +6 位作者 WANG Ai-fei MA Tao-tao LIU Fang GAO Song YAN Su-hao DI Yi QIN Tian-shi 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3714-3727,共14页
A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hype... A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2. 展开更多
关键词 dendritic structures fullerene C60 electron transport materials enhanced solubility perovskite solar cells
下载PDF
Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material
18
作者 Tai Wu Linqin Wang +6 位作者 Rongjun Zhao Rongshan Zhuang Kanghong Zhao Gaoyuan Liu Jing Huang Licheng Sun Yong Hua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期312-318,共7页
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and... Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs. 展开更多
关键词 Perovskite solar cell Hole transporting material Organic metal complex Dopant-free
下载PDF
C≡N-based carbazole-arylamine hole transporting materials for perovskite solar cells: Substitution position matters
19
作者 Zi'an Zhou Xianfu Zhang +6 位作者 Rahim Ghadari Xuepeng Liu Wenjun Wang Yong Ding Molang Cai Jia Hong Pan Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期563-571,I0013,共10页
Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been pro... Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs. 展开更多
关键词 Hole transporting materials Cyano group Substitution position Perovskite solar cells
下载PDF
Enhanced Photovoltage for Inverted Perovskite Solar Cells Using Delafossite CuCrO_(2) Hole Transport Material
20
作者 Xue-yan Shan Bin Tong +7 位作者 Shi-mao Wang Xiao Zhao Wei-wei Dong Gang Meng Zan-hong Deng Jing-zhen Shao Ru-hua Tao Xiao-dong Fang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第6期957-964,I0064-I0071,I0074,共17页
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexib... Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs. 展开更多
关键词 Perovskite solar cell Inverted architecture Hole transport material CuCrO_(2) Open-circuit voltage
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部