The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)...The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.展开更多
Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdT...Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode,carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future.展开更多
Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an...Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC.展开更多
In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The p...In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed.展开更多
In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c...In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).展开更多
Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barrier...Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barriers in the course of material transport and material accumulation area,etc.Therefore,Lagrangian coherent structures(a method developed for describing the transport structure of fluids in recent years)was introduced to investigate and predict the floating material and debris transport process in the Laizhou Bay,Bohai Sea,during typhoon Lekima in 2019.Results show that the Lagrangian coherent structure could well explain the complex flow phenomena in the bay.During the typhoon,the general direction of floating material transport in the Laizhou Bay was anticlockwise.There was a channel for material transport in the northwest and south of the bay,and there are transportation obstacles in the northeast-southwest direction in the middle of the bay.Therefore,the typhoon might worsen the water quality.These results provide references for precise countermeasures to control the formulation of pollution in the Laizhou Bay.展开更多
Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and ...Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs.展开更多
Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of p...Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells.展开更多
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo...Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions.展开更多
Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in...Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.展开更多
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien...In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs.展开更多
Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as elec...Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction ofa 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-flee HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFS1). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%.展开更多
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t...Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.展开更多
This study is to combine a coastal high-resolution (2′×2′) two-way coupled wave-tide-surge numerical model (including 3 main physical mechanisms) with a material transport/diffusion model for understanding the ...This study is to combine a coastal high-resolution (2′×2′) two-way coupled wave-tide-surge numerical model (including 3 main physical mechanisms) with a material transport/diffusion model for understanding the law of material transport/diffusion. Results show that the law of material trans- port/diffusion driven by background current field simulated by the coupled wave-tide-surge model is dif- ferent from that simulated by pure tide-surge, and more different from traditional ones driven by tidal current. The coupled background current should be taken into account for the simulation.展开更多
A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The i...A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved.展开更多
The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to imp...The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.展开更多
A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hype...A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2.展开更多
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and...Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.展开更多
Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been pro...Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexib...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.展开更多
基金supported by the National Natural Science Foundation of China(61904166,22209145)the Natural Science Foundation of Sichuan Province(2022NSFSC0258)the Fundamental Research Funds for the Central Universities(YJ2021129)。
文摘The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.
基金financially supported by the Ministry of Higher Education (FRGS/1/2017/STG02/UKM/02/1)Universiti Kebangsaan Malaysia (GUP-2015-019)
文摘Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode,carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future.
文摘Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC.
基金This work was supported by Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2019B007)the Heilongjiang Provincial Postdoctoral Science Foundation(Grant No.LBH-TZ0604)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF2019042).
文摘In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed.
基金supported by the National Basic Research Program of China (No. 2015CB932200)the CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (No. 116134KYSB20160130)+2 种基金the Natural Science Foundation of Anhui Province (No. 1508085SMF224)the National Natural Science Foundation of China (No. 51474201)the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607)
文摘In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%).
基金Supported by the National Natural Science Foundation of China(No.41974085)the National Key R&D Program of China(No.2019YFC1408100)。
文摘Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barriers in the course of material transport and material accumulation area,etc.Therefore,Lagrangian coherent structures(a method developed for describing the transport structure of fluids in recent years)was introduced to investigate and predict the floating material and debris transport process in the Laizhou Bay,Bohai Sea,during typhoon Lekima in 2019.Results show that the Lagrangian coherent structure could well explain the complex flow phenomena in the bay.During the typhoon,the general direction of floating material transport in the Laizhou Bay was anticlockwise.There was a channel for material transport in the northwest and south of the bay,and there are transportation obstacles in the northeast-southwest direction in the middle of the bay.Therefore,the typhoon might worsen the water quality.These results provide references for precise countermeasures to control the formulation of pollution in the Laizhou Bay.
基金financially supported by the National Natural Science Foundation of China(Grants 21805114)Natural Science Foundation of Jiangsu province(BK20180867,BK20180869)+5 种基金China Postdoctoral Science Foundation(2019M651741)Six talent peaks project in Jiangsu province(XNY066)the Jiangsu University Foundation(17JDG032,17JDG031)High-tech Research Key laboratory of Zhenjiang(SS2018002)the high-performance computing platform of Jiangsu Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Two novel hole transport materials (HTMs) with indaceno[1,2-b:5,6-b’]dithiophene (IDT) as core building blocks,termed IDT1 and IDT2,were designed and synthesized.The side alkyl chains were introduced to regulate and control the morphology and stacking behavior of HTMs,and the peripheral triarylamine arms were introduced to adjust the energy levels and to facilitate efficient hole transport.Applied in mesoporous structured perovskite solar cells (PSCs),HTM IDT1 achieved higher power conversion efficiency (PCE,19.55%) and better stability than Spiro-OMeTAD (19.25%) and IDT2 (15.77%) based PSC.These results suggest the potential of IDTl as a promising HTM for PSCs.
基金the National Key Research Development Program of China(2016YFA0602900)the National Natural Science Foundation of China(21272079,21572069)+1 种基金the Science and Technology Planning Project of Guangdong Province,China(2013B010405003)the fund from the Guangzhou Science and Technology Project,China(201607010265)
文摘Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells.
基金financially supported by the National Natural Science Foundation of China(Grants 21805114,21905119)Key Research and Development program of Jiangsu Province(BE2019009-2)+4 种基金Natural Science Foundation of Jiangsu province(BK20180869,BK20180867)China Postdoctoral Science Foundation(2019M651741),Top talents in Jiangsu province(XNY066)the Jiangsu University Foundation(17JDG032,17JDG031)Hightech Research Key laboratory of Zhenjiang(SS2018002)the State Key Laboratory of Fine Chemicals(KF1902)。
文摘Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions.
基金the support from the National Natural Science Foundation of China (51873177, 51573153, 61564003 and 21875204)the group of Advanced Photoelectricity and Supermolecule Function Materials of Ministry of Education (IRT-17R90)+1 种基金the Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilizationsupport from Guangxi Bagui Scholar Program and Guangxi Natural Science Foundation (2015GXNSFGA139002)。
文摘Two non-conjugated polymers PEIE-DBO and PEIE-DCO, prepared by quaternization of polyethyleneimine ethoxylate by 1,8-dibromooctane and 1,8-dichlorooctane respectively, are developed as electron transport layer(ETL) in high-performance inverted organic solar cells(OSCs), and the effects of halide ions on polymeric photoelectric performance are fully investigated. PEIE-DBO possesses higher electron mobility(3.68×10-4 cm2 V-1s-1), higher conductivity and more efficient exciton dissociation and electron extraction, attributed to its lower work function(3.94 eV) than that of PEIE-DCO, which results in better photovoltaic performance in OSCs. The inverted OSCs with PTB7-Th: PC71BM as photoactive layer and PEIE-DBO as ETL exhibit higher PCE of 10.52%, 9.45% and 9.09% at the thickness of 9, 35 and 50 nm,respectively. To our knowledge, PEIE-DBO possesses the best thickness-insensitive performance in polymeric ETLs of inverted fullerene-based OSCs. Furthermore, PEIE-DBO was used to fabricate the inverted non-fullerene OSCs(PM6:Y6) and obtained a high PCE of 15.74%, which indicates that PEIE-DBO is effective both in fullerene-based OSCs and fullerene-free OSCs.
基金financial support from the Natural Science Foundation of China (grant numbers: 51661135021, 21606039, 91233201, and 21276044)
文摘In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs.
基金supported by the Swedish Research CouncilK&A Wallenberg Foundation+2 种基金Swedish Energy AgencyNational Natural Science Foundation of China(21120102036,91233201)the National Basic Research Program of China(2014CB239402)
文摘Based on the previous research work in our laboratory, we have designed and synthesized a small-molecule, hole transport material (HTM) POZ6-2 using phenoxazine (POZ) as central unit and dicyanovinyl units as electron-withdrawing terminal groups. Through the introduction ofa 2-ethyl-hexyl bulky chain into the POZ core unit, POZ6-2 exhibits good solubility in organic solvents. In addition, POZ6-2 possesses appropriate energy levels in combination with a high hole mobility and conductivity in its pristine form. Therefore, it can readily be used as a dopant-flee HTM in perovskite solar cells (PSCs) and a conversion efficiency of 10.3% was obtained. The conductivity of the POZ6-2 layer can be markedly enhanced via doping in combination with typical additives, such as 4-tert-butylpyridine (TBP) and lithium bis(trifluoromethanesulfonyl) imide (LiTFS1). Correspondingly, the efficiency of the PSCs was further improved to 12.3% using doping strategies. Under the same conditions, reference devices based on the well-known HTM Spiro-OMeTAD show an efficiency of 12.8%.
基金supported by the National Natural Science Foundation of China(11222217)the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-0414G01)
文摘Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.
基金Supported by the Distinguished Overseas Youth Scholar Grant from NSFC (No.40428001, No.40576018)the National Basic Research Program of China (973 Program) (No. 2005CB422301).
文摘This study is to combine a coastal high-resolution (2′×2′) two-way coupled wave-tide-surge numerical model (including 3 main physical mechanisms) with a material transport/diffusion model for understanding the law of material transport/diffusion. Results show that the law of material trans- port/diffusion driven by background current field simulated by the coupled wave-tide-surge model is dif- ferent from that simulated by pure tide-surge, and more different from traditional ones driven by tidal current. The coupled background current should be taken into account for the simulation.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1506400)the National Natural Science Foundation of China(Grant Nos.61904053,51702096,U1705256,51961165106)the Fundamental Research Funds for the Central Universities(Grant Nos.2019MS026,2019MS027,2020MS080)。
文摘A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved.
基金This work was financially supported by the National Natural Science Foundation of China(62074095)the Fundamental Research Funds for the Central Universities(GK202002001).
文摘The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.
基金Projects(2017YFE0131900,2017YFB0404500)supported by National Key Research and Development Program of ChinaProjects(91833306,91733302,62075094)supported by the National Natural Science Foundation of China+1 种基金Project(202003N4004)supported by the Ningbo Natural Science Foundation,ChinaProject(2020GXLH-Z-014)supported by the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University,China。
文摘A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2.
基金the National Natural Science Foundation of China(22065038)the Key Project of Natural Science Foundation of Yunnan(KC10110419)+4 种基金the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(K264202006820)the Program for Excellent Young Talents of Yunnan University and Major Science(C176220200)the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province(No.2019Z E001-1202002AB080001)for financial support。
文摘Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs.
基金Zi'an Zhou and Xianfu Zhang contributed equally to this work.This work was supported by the National Key R&D Program ofChina(2018YFB1500101)the 111 Project(No.B16016)+1 种基金the National Natural Science Foundation of China(No.61904053,51702096,U1705256 and 51961165106)the FundamentalResearch Funds for the Central Universities(No.2019MSO_(2)6.2019MS027,and 2020MS080)。
文摘Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs.
基金jointly supported by the National Natural Science Foundation of China(No.62075223 and No.11674324)CAS Pioneer Hundred Talents Program of Chinese Academy of Sciences+5 种基金CAS-JSPS Joint Research Projects(GJHZ1891)Director Fund of Advanced Laser Technology Laboratory of Anhui Province(AHL2020ZR02)Key Lab of Photovoltaic and Energy Conservation Materials of Chinese Academy of Sciences(PECL2019QN005 and PECL2018QN001)the Natural Science Foundation of Top Talent of Shenzhen Technology University(No.2020101)Natural Science Research Project of Higher School of Anhui Province(KJ2020A0477)Initial Scientific Research Fund of Anhui Jianzhu University(No.2018QD60)。
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.