Discovering new materials with excellent performance is a hot issue in the materials genome initiative.Traditional experiments and calculations often waste large amounts of time and money and are also limited by vario...Discovering new materials with excellent performance is a hot issue in the materials genome initiative.Traditional experiments and calculations often waste large amounts of time and money and are also limited by various conditions. Therefore, it is imperative to develop a new method to accelerate the discovery and design of new materials. In recent years, material discovery and design methods using machine learning have attracted much attention from material experts and have made some progress. This review first outlines available materials database and material data analytics tools and then elaborates on the machine learning algorithms used in materials science. Next, the field of application of machine learning in materials science is summarized, focusing on the aspects of structure determination, performance prediction, fingerprint prediction, and new material discovery. Finally, the review points out the problems of data and machine learning in materials science and points to future research. Using machine learning algorithms, the authors hope to achieve amazing results in material discovery and design.展开更多
The marriage of artificial intelligence(AI)and Materials Genome Initiative(MGI)could profoundly change the landscape of modern materials research,leading to a new paradigm of data-driven and AI-driven materials discov...The marriage of artificial intelligence(AI)and Materials Genome Initiative(MGI)could profoundly change the landscape of modern materials research,leading to a new paradigm of data-driven and AI-driven materials discovery.In this perspective,we will give an overview on the central role of AI in the MGI research.In particular,an emerging research field of ab initio AI,which applies state-of-the-art AI techniques to help solve bottleneck problems of ab initio computation,will be introduced.The development of ab initio AI will greatly accelerate highthroughput computation,promote the construction of large materials database,and open new opportunities for future research of MGI.展开更多
Since its launch in 2011, the Materials Genome Initiative(MGI) has drawn the attention of researchers from academia,government, and industry worldwide. As one of the three tools of the MGI, the use of materials data...Since its launch in 2011, the Materials Genome Initiative(MGI) has drawn the attention of researchers from academia,government, and industry worldwide. As one of the three tools of the MGI, the use of materials data, for the first time, has emerged as an extremely significant approach in materials discovery. Data science has been applied in different disciplines as an interdisciplinary field to extract knowledge from data. The concept of materials data science has been utilized to demonstrate its application in materials science. To explore its potential as an active research branch in the big data era, a three-tier system has been put forward to define the infrastructure for the classification, curation and knowledge extraction of materials data.展开更多
This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples...This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.展开更多
Metallic glasses(MGs)have attracted extensive attention in the past decades due to their unique chem-ical,physical and mechanical properties promising for a wide range of engineering applications.A thor-ough understan...Metallic glasses(MGs)have attracted extensive attention in the past decades due to their unique chem-ical,physical and mechanical properties promising for a wide range of engineering applications.A thor-ough understanding of their structure-property relationships is the key to the development of novel MGs with desirable performance.New strategies,as proposed by Materials Genome Initiative(MGI),construct a new paradigm for high-throughput materials discovery and design,and are being increas-ingly implemented in the search of new MGs.While a few reports have summarized the application of high-throughput and/or machine learning techniques,a comprehensive assessment of materials genome strategies for developing MGs is still missing.Herein,this paper aims to present a timely overview of key advances in this fascinating subject,as well as current challenges and future opportunities.A holistic approach is used to cover the related topics,including high-throughput preparation and characterization of MGs,and data-driven machine learning strategies for accelerating the development of novel MGs.Fi-nally,future research directions and perspectives for MGI-assisted design of MGs are also proposed and surmised.展开更多
Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demo...Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductorto-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.展开更多
As an essential component of the Materials Genome Initiative aiming to shorten the period of materials research and development, combinatorial synthesis and rapid characterization technologies have been playing a more...As an essential component of the Materials Genome Initiative aiming to shorten the period of materials research and development, combinatorial synthesis and rapid characterization technologies have been playing a more and more important role in exploring new materials and comprehensively understanding materials properties. In this review, we discuss the advantages of high-throughput experimental techniques in researches on superconductors. The evolution of combinatorial thin-film technology and several high-speed screening devices are briefly introduced. We emphasize the necessity to develop new high-throughput research modes such as a combination of high-throughput techniques and conventional methods.展开更多
Recent developments in data mining-aided materials discovery and optimization are reviewed in this paper,and an introduction to the materials data mining(MDM)process is provided using case studies.Both qualitative and...Recent developments in data mining-aided materials discovery and optimization are reviewed in this paper,and an introduction to the materials data mining(MDM)process is provided using case studies.Both qualitative and quantitative methods in machine learning can be adopted in the MDM process to accomplish different tasks in materials discovery,design,and optimization.State-of-the-art techniques in data mining-aided materials discovery and optimization are demonstrated by reviewing the controllable synthesis of dendritic Co_(3)O_(4) superstructures,materials design of layered double hydroxide,battery materials discovery,and thermoelectric materials design.The results of the case studies indicate that MDM is a powerful approach for use in materials discovery and innovation,and will play an important role in the development of the Materials Genome Initiative and Materials Informatics.展开更多
The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion ...The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion migration,electrode/electrolyte surface/interface,structural(phase)and thermodynamics stability of the electrode materials,physics of intercalation and deintercalation.The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed.A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems.In order to fasten the progress of the new materials discovery and design for the next generation LSB,the Materials Genome Initiative(MGI)for LSB materials is a promising strategy and the related requirements are highlighted.展开更多
With the rapid developments in the field of information technology,the material research society is looking for an alternate scientific route to the traditional methods of trial and error in material research and proc...With the rapid developments in the field of information technology,the material research society is looking for an alternate scientific route to the traditional methods of trial and error in material research and process de-velopment.Machine learning emerges as a new research paradigm to accel-erate the application-oriented material discovery.Quantum dots are ex-panded as functional nanomaterials to enhance cutting-edge photonic technology.However,they suffer from uncertainty in industrial fabrication and application.Here,we discuss how machine learning accelerates the development of quantum dots.The basic principles and operation proce-dures of machine learning are described with a few representative examples of quantum dots.We emphasize how machine learning contributes to the optimization of synthesis and the analysis of material characterizations.To conclude,we give a short perspective discussing the problems of combining machine learning and quantum dots.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 61971208, 61671225 and 51864027)the Yunnan Applied Basic Research Projects (No. 2018FA034)+2 种基金the Yunnan Reserve Talents of Young and Middleaged Academic and Technical Leaders (Shen Tao, 2018)the Yunnan Young Top Talents of Ten Thousands Plan (Shen Tao, Zhu Yan, Yunren Social Development No. 2018 73)the Scientific Research Foundation of Kunming University of Science and Technology (No. KKSY201703016)。
文摘Discovering new materials with excellent performance is a hot issue in the materials genome initiative.Traditional experiments and calculations often waste large amounts of time and money and are also limited by various conditions. Therefore, it is imperative to develop a new method to accelerate the discovery and design of new materials. In recent years, material discovery and design methods using machine learning have attracted much attention from material experts and have made some progress. This review first outlines available materials database and material data analytics tools and then elaborates on the machine learning algorithms used in materials science. Next, the field of application of machine learning in materials science is summarized, focusing on the aspects of structure determination, performance prediction, fingerprint prediction, and new material discovery. Finally, the review points out the problems of data and machine learning in materials science and points to future research. Using machine learning algorithms, the authors hope to achieve amazing results in material discovery and design.
基金supported by the National Natural Science Foundation of China(grant no.12334003)the Basic Science Center Project of NSFC(grant no.52388201)+1 种基金the National Science Fund for Distinguished Young Scholars(grant no.12025405)the Beijing Advanced Innovation Center for Future Chip(ICFC),and the Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘The marriage of artificial intelligence(AI)and Materials Genome Initiative(MGI)could profoundly change the landscape of modern materials research,leading to a new paradigm of data-driven and AI-driven materials discovery.In this perspective,we will give an overview on the central role of AI in the MGI research.In particular,an emerging research field of ab initio AI,which applies state-of-the-art AI techniques to help solve bottleneck problems of ab initio computation,will be introduced.The development of ab initio AI will greatly accelerate highthroughput computation,promote the construction of large materials database,and open new opportunities for future research of MGI.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0700503)the National High Technology Research and Development Program of China(Grant No.2015AA03420)+2 种基金Beijing Municipal Science and Technology Project,China(Grant No.D161100002416001)the National Natural Science Foundation of China(Grant No.51172018)Kennametal Inc
文摘Since its launch in 2011, the Materials Genome Initiative(MGI) has drawn the attention of researchers from academia,government, and industry worldwide. As one of the three tools of the MGI, the use of materials data, for the first time, has emerged as an extremely significant approach in materials discovery. Data science has been applied in different disciplines as an interdisciplinary field to extract knowledge from data. The concept of materials data science has been utilized to demonstrate its application in materials science. To explore its potential as an active research branch in the big data era, a three-tier system has been put forward to define the infrastructure for the classification, curation and knowledge extraction of materials data.
基金Project supported by the National Natural Science Foundation of China(Grant No.51772321)the Beijing Science and Technology Project(Grant No.D171100005517001)+1 种基金the National Key Research and Development Plan(Grant No.2017YFB0701602)the Youth Innovation Promotion Association(Grant No.2016005)
文摘This paper reviews the rapid progress in the field of high-throughput modeling based on the Materials Genome Initiative, and its application in the discovery and design of lithium battery materials. It offers examples of screening, optimization and design of electrodes, electrolytes, coatings, additives, etc. and the possibility of introducing the machine learning method into material design. The application of the material genome method in the development of lithium battery materials provides the possibility to speed up the upgrading of new candidates in the discovery of lots of functional materials.
基金This research was supported financially by National Natural Sci-ence Foundation of China(Nos.52130108,51961160729,51871016,11790293,52071024)Guangdong Basic and Applied Basic Research Foundation(Nos.2020B1515120077 and2022A1515110805)+3 种基金the Funds for Creative Research Groups of China(No.51921001)Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT_14R05)the Fundamental Research Fund for the Central Universities(No.FRF-TP-22-001C2)State Key Lab of Advanced Metals and Materials(No.2022-ZD01).
文摘Metallic glasses(MGs)have attracted extensive attention in the past decades due to their unique chem-ical,physical and mechanical properties promising for a wide range of engineering applications.A thor-ough understanding of their structure-property relationships is the key to the development of novel MGs with desirable performance.New strategies,as proposed by Materials Genome Initiative(MGI),construct a new paradigm for high-throughput materials discovery and design,and are being increas-ingly implemented in the search of new MGs.While a few reports have summarized the application of high-throughput and/or machine learning techniques,a comprehensive assessment of materials genome strategies for developing MGs is still missing.Herein,this paper aims to present a timely overview of key advances in this fascinating subject,as well as current challenges and future opportunities.A holistic approach is used to cover the related topics,including high-throughput preparation and characterization of MGs,and data-driven machine learning strategies for accelerating the development of novel MGs.Fi-nally,future research directions and perspectives for MGI-assisted design of MGs are also proposed and surmised.
文摘Fast synthesis and screening of materials are vital to the advance of materials science and are an essential component of the Materials Genome Initiative. Here we use copper-oxide superconductors as an example to demonstrate the power of integrating combinatorial molecular beam epitaxy synthesis with high-throughput electric transport measurements. Leveraging this method, we have generated a phase diagram with more than 800 compositions in order to unravel the doping dependence of interface superconductivity. In another application of the same method, we have studied the superconductorto-insulator quantum phase transition with unprecedented accuracy in tuning the chemical doping level.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2015CB921000,2016YFA0300301,2017YFA0303003,and 2017YFA0302902)the National Natural Science Foundation of China(Grant Nos.11674374,11804378,and 11574372)+3 种基金the Beijing Municipal Science and Technology Project(Grant No.Z161100002116011)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020100)the Opening Project of Wuhan National High Magnetic Field Center(Grant No.PHMFF2015008)
文摘As an essential component of the Materials Genome Initiative aiming to shorten the period of materials research and development, combinatorial synthesis and rapid characterization technologies have been playing a more and more important role in exploring new materials and comprehensively understanding materials properties. In this review, we discuss the advantages of high-throughput experimental techniques in researches on superconductors. The evolution of combinatorial thin-film technology and several high-speed screening devices are briefly introduced. We emphasize the necessity to develop new high-throughput research modes such as a combination of high-throughput techniques and conventional methods.
基金Financial supports to this work from National Key Research and Development Program of China(No.2016YFB0700504,2017YFB0701600)Science and Technology Commission of Shanghai Municipality of China(No.15DZ2260300 and No.16DZ2260600)are gratefully acknowledged.
文摘Recent developments in data mining-aided materials discovery and optimization are reviewed in this paper,and an introduction to the materials data mining(MDM)process is provided using case studies.Both qualitative and quantitative methods in machine learning can be adopted in the MDM process to accomplish different tasks in materials discovery,design,and optimization.State-of-the-art techniques in data mining-aided materials discovery and optimization are demonstrated by reviewing the controllable synthesis of dendritic Co_(3)O_(4) superstructures,materials design of layered double hydroxide,battery materials discovery,and thermoelectric materials design.The results of the case studies indicate that MDM is a powerful approach for use in materials discovery and innovation,and will play an important role in the development of the Materials Genome Initiative and Materials Informatics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234013,11064004 and 11264014)supported by the"Gan-po talent 555"project of Jiangxi Province
文摘The physics that associated with the performance of lithium secondary batteries(LSB)are reviewed.The key physical problems in LSB include the electronic conduction mechanism,kinetics and thermodynamics of lithium ion migration,electrode/electrolyte surface/interface,structural(phase)and thermodynamics stability of the electrode materials,physics of intercalation and deintercalation.The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed.A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems.In order to fasten the progress of the new materials discovery and design for the next generation LSB,the Materials Genome Initiative(MGI)for LSB materials is a promising strategy and the related requirements are highlighted.
基金This study was supported by the National Natural Science Foundation of China(No.61722502)the Science and Technology Innovation Foundation of Shenzhen(No.JCYJ20170817114726048).
文摘With the rapid developments in the field of information technology,the material research society is looking for an alternate scientific route to the traditional methods of trial and error in material research and process de-velopment.Machine learning emerges as a new research paradigm to accel-erate the application-oriented material discovery.Quantum dots are ex-panded as functional nanomaterials to enhance cutting-edge photonic technology.However,they suffer from uncertainty in industrial fabrication and application.Here,we discuss how machine learning accelerates the development of quantum dots.The basic principles and operation proce-dures of machine learning are described with a few representative examples of quantum dots.We emphasize how machine learning contributes to the optimization of synthesis and the analysis of material characterizations.To conclude,we give a short perspective discussing the problems of combining machine learning and quantum dots.