This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitra...This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.展开更多
In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we...In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we do not know their solutions up to now. Based on the coordinate transformations of the Kerr and the Kerr-Newman solutions of the Einstein’s equation of gravity field with axial symmetry, the gravity fields of static thin loop and double spheres are obtained. The results indicate that, no matter how much the mass and density are, there are singularities at the central point of thin loop and the contact point of double spheres. What is more, the singularities are completely exposed in vacuum. Space near the surfaces of thin loop and spheres are highly curved, although the gravity fields are very weak. These results are inconsistent with practical experience and completely impossible. By reasonable analogy, black holes with singularity in cosmology and astrophysics are something illusive. Caused by the mathematical description of curved space-time, they do not exist in real world actually. If there are black holes in the universe, they can only be the types of the Newtonian black holes without singularities, rather than the Einstein’s singularity black holes. In order to escape the puzzle of singularity thoroughly, the description of gravity should return to the traditional form of dynamics in flat space. The renormalization of gravity and the unified description of four basic interactions may be possible only based on the frame of flat space-time. Otherwise, theses problems can not be solved forever. Physicists should have a clear understanding about this problem.展开更多
A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativ...A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.展开更多
In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that ...In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
文摘This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.
文摘In the classical Newtonian mechanics, the gravity fields of static thin loop and double spheres are two simple but foundational problems. However, in the Einstein’s theory of gravity, they are not simple. In fact, we do not know their solutions up to now. Based on the coordinate transformations of the Kerr and the Kerr-Newman solutions of the Einstein’s equation of gravity field with axial symmetry, the gravity fields of static thin loop and double spheres are obtained. The results indicate that, no matter how much the mass and density are, there are singularities at the central point of thin loop and the contact point of double spheres. What is more, the singularities are completely exposed in vacuum. Space near the surfaces of thin loop and spheres are highly curved, although the gravity fields are very weak. These results are inconsistent with practical experience and completely impossible. By reasonable analogy, black holes with singularity in cosmology and astrophysics are something illusive. Caused by the mathematical description of curved space-time, they do not exist in real world actually. If there are black holes in the universe, they can only be the types of the Newtonian black holes without singularities, rather than the Einstein’s singularity black holes. In order to escape the puzzle of singularity thoroughly, the description of gravity should return to the traditional form of dynamics in flat space. The renormalization of gravity and the unified description of four basic interactions may be possible only based on the frame of flat space-time. Otherwise, theses problems can not be solved forever. Physicists should have a clear understanding about this problem.
文摘A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.
文摘In the theory of general relativity, the finding of the Einstein Field Equation happens in a complex mathematical operation, a process we don’t need any more. Through a new theory in vector analysis, we’ll see that we can calculate the components of the Ricci tensor, Ricci scalar, and Einstein Field Equation directly in an easy way without the need to use general relativity theory hypotheses, principles, and symbols. Formulating the general relativity theory through another theory will make it easier to understand this relativity theory and will help combining it with electromagnetic theory and quantum mechanics easily.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.