This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of th...This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose. The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of nu-merical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark’s method to verify the results.展开更多
A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi...A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,展开更多
文摘This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose. The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of nu-merical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark’s method to verify the results.
基金supported by National Natural Science Foundation of China under grant No.50978183
文摘A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,