The aim of this paper is the evaluation of the performance of a low pressure PEM (proton exchange membrane) fuel cell stack to step load changes, which are characteristic of standalone fuel cell system applications....The aim of this paper is the evaluation of the performance of a low pressure PEM (proton exchange membrane) fuel cell stack to step load changes, which are characteristic of standalone fuel cell system applications. The goal is a better understanding of the electrical behavior of the FC (fuel cell), as a result of the electrochemical processes, via the cell's voltage characteristic during transient response. While changing the load, the performance of significant parameters affected such as temperature, pressure, purge status etc. are registered and evaluated. The analysis and experiment are based on a low pressure 1.2 kW PEM fuel cell stack (NEXAS power module). Then, the experiment is simulated using Matlab/Simulink tools, while PCU (power conditioning units) are added in order to control power flow for enhanced performance. Finally, both operational and simulation data are compared to each other showing that simple PCUs applications can improve system's efficiency.展开更多
The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MT...The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MTJ/CMOS(complementary metal-oxide-semiconductor)circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices.In this work,we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink,which is mainly composed of a physics-based STT-MTJ model,a controlled resistor,and a current sensor.In the proposed framework,the STT-MTJ model,based on the Landau-Lifshitz-Gilbert-Slonczewsk(LLGS)equation,is implemented using the MATLAB script.The proposed simulation framework is modularized design,with the advantage of simple-to-use and easy-to-expand.To prove the effectiveness of the proposed framework,the STT-MTJ model is benchmarked with experimental results.Furthermore,the pre-charge sense amplifier(PCSA)circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated.The results demonstrate the effectiveness of our simulation framework.展开更多
文摘The aim of this paper is the evaluation of the performance of a low pressure PEM (proton exchange membrane) fuel cell stack to step load changes, which are characteristic of standalone fuel cell system applications. The goal is a better understanding of the electrical behavior of the FC (fuel cell), as a result of the electrochemical processes, via the cell's voltage characteristic during transient response. While changing the load, the performance of significant parameters affected such as temperature, pressure, purge status etc. are registered and evaluated. The analysis and experiment are based on a low pressure 1.2 kW PEM fuel cell stack (NEXAS power module). Then, the experiment is simulated using Matlab/Simulink tools, while PCU (power conditioning units) are added in order to control power flow for enhanced performance. Finally, both operational and simulation data are compared to each other showing that simple PCUs applications can improve system's efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.62004223)the Science and Technology Innovation Program of Hunan Province,China(Grant No.2022RC1094)+1 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF202012)the Hunan Provincial Science Innovation Project for Postgraduate,China(Grant No.CX20210086).
文摘The spin-transfer-torque(STT)magnetic tunneling junction(MTJ)device is one of the prominent candidates for spintronic logic circuit and neuromorphic computing.Therefore,building a simulation framework of hybrid STT-MTJ/CMOS(complementary metal-oxide-semiconductor)circuits is of great value for designing a new kind of computing paradigm based on the spintronic devices.In this work,we develop a simulation framework of hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink,which is mainly composed of a physics-based STT-MTJ model,a controlled resistor,and a current sensor.In the proposed framework,the STT-MTJ model,based on the Landau-Lifshitz-Gilbert-Slonczewsk(LLGS)equation,is implemented using the MATLAB script.The proposed simulation framework is modularized design,with the advantage of simple-to-use and easy-to-expand.To prove the effectiveness of the proposed framework,the STT-MTJ model is benchmarked with experimental results.Furthermore,the pre-charge sense amplifier(PCSA)circuit consisting of two STT-MTJ devices is validated and the electrical coupling of two spin-torque oscillators is simulated.The results demonstrate the effectiveness of our simulation framework.