In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amaz...In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.展开更多
主要从图的角度研究了布尔控制网络(Boolean Control Network,BCN)可重构的条件。首先,从状态可区分的角度给出了BCN可重构的定义,为后续从状态转移图的角度来研究可重构问题奠定了基础。其次,给出了BCN中完美顶点划分的概念及其相关推...主要从图的角度研究了布尔控制网络(Boolean Control Network,BCN)可重构的条件。首先,从状态可区分的角度给出了BCN可重构的定义,为后续从状态转移图的角度来研究可重构问题奠定了基础。其次,给出了BCN中完美顶点划分的概念及其相关推论。随后,提出了可重构的一些充分和必要的条件。其中一个结果表明,当处理大型逻辑网络系统时,只需要考虑更少的节点来避免维数诅咒。最后,通过一个具体的生物学实例和一个具体的例子说明所得到的结果。展开更多
文摘In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.
文摘主要从图的角度研究了布尔控制网络(Boolean Control Network,BCN)可重构的条件。首先,从状态可区分的角度给出了BCN可重构的定义,为后续从状态转移图的角度来研究可重构问题奠定了基础。其次,给出了BCN中完美顶点划分的概念及其相关推论。随后,提出了可重构的一些充分和必要的条件。其中一个结果表明,当处理大型逻辑网络系统时,只需要考虑更少的节点来避免维数诅咒。最后,通过一个具体的生物学实例和一个具体的例子说明所得到的结果。