In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was th...In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.展开更多
In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,...In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,PDMS was used for the active layer,and Torlon?,PVDF,Ultem?,and Matrimid?with different porosity were used as support layer for fabrication of hollow fiber composite membranes.The performance of the membranes varied with different hollow fiber substrates was investigated.Pure gas permeance of the hollow fiber was tested to investigate the pore size of all fibers.The effect of support layer on the mass transfer in hydrophobic PV composite membrane was investigated.The results show that proper porosity and pore diameter of the support are demanded to minimize the Knudsen effect.Based on the result,ZIF-8 was introduced to prepare more selective separation layer,in order to improve the PV performance.The PDMS/ZIF-8/Torlon?membrane had a separation factor of 8.9 and a total flux of 847 g·m-2·h-1.This hollow fiber PDMS/ZIF-8/Torlon?composite membrane has a great potential in the industrial application.展开更多
A computational code is developed to help identify metal absorption lines in high resolution QSO spectra, especially in the Lyα forest. The input to the code includes a list of line central wavelengths, column densit...A computational code is developed to help identify metal absorption lines in high resolution QSO spectra, especially in the Lyα forest. The input to the code includes a list of line central wavelengths, column densities and Doppler widths. The code then searches for candidate metal absorption systems and assesses the probability that each system could be real. The framework of the strategy we employ is described in detail and we discuss how to estimate the errors in line profile fitting that are essential to identification. A series of artificial spectra is constructed to calibrate the performance of the code. Due to the effects of blending and noise on Voigt profile fitting, the completeness of the identification depends on the column density of absorbers. For intermediate and strong artificial metal absorbers, more than 90% could be confirmed by the code. The results of applying the code to the real spectra of QSOs HS0757+5218 and Q0100+1300 are also presented.展开更多
One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by micr...One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.展开更多
文摘In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.
基金Supported by the National Natural Science Foundation of China(21706003)the National High Technology Research and Development Program of China(2015AA03A602)+1 种基金the High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20170305)the China Scholarship Council(201406540011).
文摘In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,PDMS was used for the active layer,and Torlon?,PVDF,Ultem?,and Matrimid?with different porosity were used as support layer for fabrication of hollow fiber composite membranes.The performance of the membranes varied with different hollow fiber substrates was investigated.Pure gas permeance of the hollow fiber was tested to investigate the pore size of all fibers.The effect of support layer on the mass transfer in hydrophobic PV composite membrane was investigated.The results show that proper porosity and pore diameter of the support are demanded to minimize the Knudsen effect.Based on the result,ZIF-8 was introduced to prepare more selective separation layer,in order to improve the PV performance.The PDMS/ZIF-8/Torlon?membrane had a separation factor of 8.9 and a total flux of 847 g·m-2·h-1.This hollow fiber PDMS/ZIF-8/Torlon?composite membrane has a great potential in the industrial application.
基金supported in part by the US NSF grants AST0507717 and AST0808168the National Natural Science Foundation of China(Grant No.10573028)+3 种基金the Key Project(No.10833005)the Group Innovation Project(No.10821302)the National Basic Research Program of China(973 ProgramNo.2007CB815402)
文摘A computational code is developed to help identify metal absorption lines in high resolution QSO spectra, especially in the Lyα forest. The input to the code includes a list of line central wavelengths, column densities and Doppler widths. The code then searches for candidate metal absorption systems and assesses the probability that each system could be real. The framework of the strategy we employ is described in detail and we discuss how to estimate the errors in line profile fitting that are essential to identification. A series of artificial spectra is constructed to calibrate the performance of the code. Due to the effects of blending and noise on Voigt profile fitting, the completeness of the identification depends on the column density of absorbers. For intermediate and strong artificial metal absorbers, more than 90% could be confirmed by the code. The results of applying the code to the real spectra of QSOs HS0757+5218 and Q0100+1300 are also presented.
基金financially supported by the National Natural Science Foundation of China(Nos.21706189,21978217,21676201)Science and Technology Plans of Tianjin(18JCQNJC06800,18PTSYJC00190,17PTSYJC00050)+2 种基金Tianjin Natural Science Foundation(No.18JCYBJC89400)Tianjin Municipal Education Commission Scientific Research Project(2017KJ074)University Students?innovation and entrepreneurship training program(202010058050,202110058127)。
文摘One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.