In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern ...In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix(HM) and execute the singular value decomposition(SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls.展开更多
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu...Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.展开更多
The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power systems.To realize the dynamic monitoring of SSOs by utilizing the high computational efficie...The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power systems.To realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and noise-resilient features of the matrix pencil method(MPM),this paper propos es an improved MPM-based parameter identification with syn chrophasors.The MPM is enhanced by the angular frequency fitting equations based on the characteristic polynomial coeffi cients of the matrix pencil to ensure the accuracy of the identi fied parameters,since the existing eigenvalue solution of the MPM ignores the angular frequency conjugation constraints of the two fundamental modes and two oscillation modes.Then,the identification and recovery of bad data are proposed by uti lizing the difference in temporal continuity of the synchropha sors before and after noise reduction.The proposed parameter identification is verified with synthetic,simulated,and actual measured phase measurement unit(PMU)data.Compared with the existing MPM,the improved MPM achieves better accuracy for parameter identification of each component in SSOs,better real-time performance,and significantly reduces the effect of bad data.展开更多
A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ...A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.展开更多
The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including sat...The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.展开更多
A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix e...A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.展开更多
With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doub...With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.展开更多
This article is devoted to the numerical solution of a projected generalized Sylvester equation with relatively small size. Such an equation arises in stability analysis and control problems for descriptor systems inc...This article is devoted to the numerical solution of a projected generalized Sylvester equation with relatively small size. Such an equation arises in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. The algebraic formula of the solution of the projected generalized continuous-time Sylvester equation is presented. A direct method based on the generalized Schur factorization is proposed. Moreover, its low-rank version for problems with low-rank right-hand sides is also proposed. The computational cost of the direct method is estimated. Numerical simulation show that this direct method has high accurncv展开更多
基金sypported by the Research Management Centre(RMC),School of Postgraduate Studies(SPS),Communication Engineering Department,Faculty of Electrical Engineering(FKE),Universiti Teknologi Malaysia(UTM),Johor Bahru(Grant Nos.12H09 and 03E20)
文摘In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique(MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix(HM) and execute the singular value decomposition(SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls.
基金Supported by the National Natural Science Foundation of China(51406031)Jilin City Science and Technology Plan Project(201464055)Jilin Province Education Department Science Research Project(2015-243)
文摘Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
基金supported by National Natural Science Foundation of China(No.52077004).
文摘The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power systems.To realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and noise-resilient features of the matrix pencil method(MPM),this paper propos es an improved MPM-based parameter identification with syn chrophasors.The MPM is enhanced by the angular frequency fitting equations based on the characteristic polynomial coeffi cients of the matrix pencil to ensure the accuracy of the identi fied parameters,since the existing eigenvalue solution of the MPM ignores the angular frequency conjugation constraints of the two fundamental modes and two oscillation modes.Then,the identification and recovery of bad data are proposed by uti lizing the difference in temporal continuity of the synchropha sors before and after noise reduction.The proposed parameter identification is verified with synthetic,simulated,and actual measured phase measurement unit(PMU)data.Compared with the existing MPM,the improved MPM achieves better accuracy for parameter identification of each component in SSOs,better real-time performance,and significantly reduces the effect of bad data.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0645)
文摘A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.
基金The work was supported by the National Natural Science Foundation of China(No.11571171)。
文摘The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.
文摘A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.
基金This work was supported in part by the National Science Foundation of China(No.51877015)the Science and Technology Foundation of State Grid Corporation of China(No.SGTYHT/19-JS-215).
文摘With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.
基金supported by the National Natural Science Foundation of China(Nos.10801048,10926150,11101149)the Natural Science Foundation of Hunan Province(No.09JJ6014)+4 种基金the Key Program of the Scientific Research Foundation from Education Bureau of Hunan Province(No.09A033)the Scientific Research Foundation of Education Bureau of Hunan Province for Outstanding Young Scholars in University(No.10B038)the Science and Technology Planning Project of Hunan Province(No.2010JT4042)the Young Core Teacher Foundation of Hunan Province in Universitythe Fundamental Research Funds for the Central Universities
文摘This article is devoted to the numerical solution of a projected generalized Sylvester equation with relatively small size. Such an equation arises in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. The algebraic formula of the solution of the projected generalized continuous-time Sylvester equation is presented. A direct method based on the generalized Schur factorization is proposed. Moreover, its low-rank version for problems with low-rank right-hand sides is also proposed. The computational cost of the direct method is estimated. Numerical simulation show that this direct method has high accurncv